These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36950147)

  • 1. Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI.
    Moly A; Aksenov A; Martel F; Aksenova T
    Front Hum Neurosci; 2023; 17():1075666. PubMed ID: 36950147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic.
    Moly A; Costecalde T; Martel F; Martin M; Larzabal C; Karakas S; Verney A; Charvet G; Chabardes S; Benabid AL; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234665
    [No Abstract]   [Full Text] [Related]  

  • 3. Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    Front Hum Neurosci; 2023; 17():1111645. PubMed ID: 37007675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding ECoG signal into 3D hand translation using deep learning.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35287119
    [No Abstract]   [Full Text] [Related]  

  • 5. Unsupervised adaptation of an ECoG based brain-computer interface using neural correlates of task performance.
    Rouanne V; Costecalde T; Benabid AL; Aksenova T
    Sci Rep; 2022 Dec; 12(1):21316. PubMed ID: 36494390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recursive Exponentially Weighted N-way Partial Least Squares Regression with Recursive-Validation of Hyper-Parameters in Brain-Computer Interface Applications.
    Eliseyev A; Auboiroux V; Costecalde T; Langar L; Charvet G; Mestais C; Aksenova T; Benabid AL
    Sci Rep; 2017 Nov; 7(1):16281. PubMed ID: 29176638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online detection of class-imbalanced error-related potentials evoked by motor imagery.
    Liu Q; Zheng W; Chen K; Ma L; Ai Q
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823492
    [No Abstract]   [Full Text] [Related]  

  • 8. Nonlinear sparse partial least squares: an investigation of the effect of nonlinearity and sparsity on the decoding of intracranial data.
    Fatemi M; Daliri MR
    J Neural Eng; 2020 Feb; 17(1):016055. PubMed ID: 31783374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface.
    Rouse AG; Williams JJ; Wheeler JJ; Moran DW
    J Neural Eng; 2016 Oct; 13(5):056018. PubMed ID: 27651034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching Markov decoders for asynchronous trajectory reconstruction from ECoG signals in monkeys for BCI applications.
    Schaeffer MC; Aksenova T
    J Physiol Paris; 2016 Nov; 110(4 Pt A):348-360. PubMed ID: 28288824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L1-penalized N-way PLS for subset of electrodes selection in BCI experiments.
    Eliseyev A; Moro C; Faber J; Wyss A; Torres N; Mestais C; Benabid AL; Aksenova T
    J Neural Eng; 2012 Aug; 9(4):045010. PubMed ID: 22832155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface.
    Forenzo D; Zhu H; Shanahan J; Lim J; He B
    bioRxiv; 2024 Apr; ():. PubMed ID: 37905046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid autoencoder framework of dimensionality reduction for brain-computer interface decoding.
    Ran X; Chen W; Yvert B; Zhang S
    Comput Biol Med; 2022 Sep; 148():105871. PubMed ID: 35933960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Long-Term BCI Study With ECoG Recordings in Freely Moving Rats.
    Costecalde T; Aksenova T; Torres-Martinez N; Eliseyev A; Mestais C; Moro C; Benabid AL
    Neuromodulation; 2018 Feb; 21(2):149-159. PubMed ID: 28685918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding and interpreting cortical signals with a compact convolutional neural network.
    Petrosyan A; Sinkin M; Lebedev M; Ossadtchi A
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524962
    [No Abstract]   [Full Text] [Related]  

  • 20. Regularized Partial Least Square Regression for Continuous Decoding in Brain-Computer Interfaces.
    Foodeh R; Ebadollahi S; Daliri MR
    Neuroinformatics; 2020 Jun; 18(3):465-477. PubMed ID: 32107734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.