These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36950226)

  • 1. LSTM-based real-time signal quality assessment for blood volume pulse analysis.
    Gao H; Zhang C; Pei S; Wu X
    Biomed Opt Express; 2023 Mar; 14(3):1119-1136. PubMed ID: 36950226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals.
    Yu SG; Kim SE; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of ROI Selection for Facial Video-Based rPPG.
    Kim DY; Lee K; Sohn CB
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison and applicability study of blood volume pulse extraction based on facial video].
    He X; Wu X; Zhang C; Wei B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Apr; 34(2):278-289. PubMed ID: 29745586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance analysis of remote photoplethysmography deep filtering using long short-term memory neural network.
    Botina-Monsalve D; Benezeth Y; Miteran J
    Biomed Eng Online; 2022 Sep; 21(1):69. PubMed ID: 36123747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG.
    Lee H; Cho A; Whang M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wavelet-based decomposition method for a robust extraction of pulse rate from video recordings.
    Finžgar M; Podržaj P
    PeerJ; 2018; 6():e5859. PubMed ID: 30519506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography.
    Song R; Chen H; Cheng J; Li C; Liu Y; Chen X
    IEEE J Biomed Health Inform; 2021 May; 25(5):1373-1384. PubMed ID: 33434140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation.
    Haugg F; Elgendi M; Menon C
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation.
    Lokendra B; Puneet G
    Comput Biol Med; 2022 Feb; 141():105146. PubMed ID: 34942393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method.
    Song R; Zhang S; Cheng J; Li C; Chen X
    Comput Biol Med; 2020 Jan; 116():103535. PubMed ID: 31760272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning.
    Schrumpf F; Frenzel P; Aust C; Osterhoff G; Fuchs M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heart Rate Measurement Based on 3D Central Difference Convolution with Attention Mechanism.
    Liu X; Wei W; Kuang H; Ma X
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote photoplethysmography with constrained ICA using periodicity and chrominance constraints.
    Macwan R; Benezeth Y; Mansouri A
    Biomed Eng Online; 2018 Feb; 17(1):22. PubMed ID: 29426326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based remote-photoplethysmography measurement from short-time facial video.
    Li B; Jiang W; Peng J; Li X
    Physiol Meas; 2022 Nov; 43(11):. PubMed ID: 36215976
    [No Abstract]   [Full Text] [Related]  

  • 16. Non-contact heart rate estimation based on singular spectrum component reconstruction using low-rank matrix and autocorrelation.
    Wang W; Wei Z; Yuan J; Fang Y; Zheng Y
    PLoS One; 2022; 17(12):e0275544. PubMed ID: 36584011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pyVHR: a Python framework for remote photoplethysmography.
    Boccignone G; Conte D; Cuculo V; D'Amelio A; Grossi G; Lanzarotti R; Mortara E
    PeerJ Comput Sci; 2022; 8():e929. PubMed ID: 35494872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart rate estimation from facial videos with motion interference using T-SNE-based signal separation.
    Wang H; Yang X; Liu X; Wang D
    Biomed Opt Express; 2022 Sep; 13(9):4494-4509. PubMed ID: 36187251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of biases in remote photoplethysmography methods.
    Dasari A; Prakash SKA; Jeni LA; Tucker CS
    NPJ Digit Med; 2021 Jun; 4(1):91. PubMed ID: 34083724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-contact, synchronous dynamic measurement of respiratory rate and heart rate based on dual sensitive regions.
    Wei B; He X; Zhang C; Wu X
    Biomed Eng Online; 2017 Jan; 16(1):17. PubMed ID: 28249595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.