BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36951279)

  • 1. Virtual endocasts of Clevosaurus brasiliensis and the tuatara: Rhynchocephalian neuroanatomy and the oldest endocranial record for Lepidosauria.
    Roese-Miron L; Jones MEH; Ferreira JD; Hsiou AS
    Anat Rec (Hoboken); 2024 Apr; 307(4):1366-1389. PubMed ID: 36951279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria).
    Jones ME
    J Morphol; 2008 Aug; 269(8):945-66. PubMed ID: 18512698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tooth and cranial disparity in the fossil relatives of Sphenodon (Rhynchocephalia) dispute the persistent 'living fossil' label.
    Meloro C; Jones ME
    J Evol Biol; 2012 Nov; 25(11):2194-209. PubMed ID: 22905810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?
    Watanabe A; Gignac PM; Balanoff AM; Green TL; Kley NJ; Norell MA
    J Anat; 2019 Mar; 234(3):291-305. PubMed ID: 30506962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara).
    Jones ME; Anderson CL; Hipsley CA; Müller J; Evans SE; Schoch RR
    BMC Evol Biol; 2013 Sep; 13():208. PubMed ID: 24063680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomical correlates and nomenclature of the chiropteran endocranial cast.
    Maugoust J; Orliac MJ
    Anat Rec (Hoboken); 2023 Nov; 306(11):2791-2829. PubMed ID: 37018745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exceptionally preserved Sphenodon-like sphenodontian reveals deep time conservation of the tuatara skeleton and ontogeny.
    Simões TR; Kinney-Broderick G; Pierce SE
    Commun Biol; 2022 Mar; 5(1):195. PubMed ID: 35241764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus).
    Regnault S; Jones ME; Pitsillides AA; Hutchinson JR
    J Anat; 2016 May; 228(5):864-76. PubMed ID: 26740056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dentary morphological variation in Clevosaurus brasiliensis (Rhynchocephalia, Clevosauridae) from the Upper Triassic of Rio Grande do Sul, Brazil.
    Romo de Vivar Martínez PR; Soares MB
    PLoS One; 2015; 10(3):e0119307. PubMed ID: 25793754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.
    Proffitt JV; Clarke JA; Scofield RP
    J Anat; 2016 Aug; 229(2):228-38. PubMed ID: 26916364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians.
    Martínez RN; Apaldetti C; Colombi CE; Praderio A; Fernandez E; Santi Malnis P; Correa GA; Abelin D; Alcober O
    Proc Biol Sci; 2013 Dec; 280(1772):20132057. PubMed ID: 24132307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels.
    Bertrand OC; Amador-Mughal F; Silcox MT
    J Anat; 2017 Jan; 230(1):128-151. PubMed ID: 27580644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocast, brain, and bones: Correspondences and spatial relationships in squamates.
    Allemand R; Abdul-Sater J; Macrì S; Di-Poï N; Daghfous G; Silcox MT
    Anat Rec (Hoboken); 2023 Oct; 306(10):2443-2465. PubMed ID: 36602153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume of the crocodilian brain and endocast during ontogeny.
    Jirak D; Janacek J
    PLoS One; 2017; 12(6):e0178491. PubMed ID: 28614349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endocranial anatomy of Buriolestes schultzi (Dinosauria: Saurischia) and the early evolution of brain tissues in sauropodomorph dinosaurs.
    Müller RT; Ferreira JD; Pretto FA; Bronzati M; Kerber L
    J Anat; 2021 Apr; 238(4):809-827. PubMed ID: 33137855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocranial Casts of Pre-Mammalian Therapsids Reveal an Unexpected Neurological Diversity at the Deep Evolutionary Root of Mammals.
    Benoit J; Fernandez V; Manger PR; Rubidge BS
    Brain Behav Evol; 2017; 90(4):311-333. PubMed ID: 29130981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endocranial anatomy of the early prozostrodonts (Eucynodontia: Probainognathia) and the neurosensory evolution in mammal forerunners.
    Kerber L; Roese-Miron L; Bubadué JM; Martinelli AG
    Anat Rec (Hoboken); 2024 Apr; 307(4):1442-1473. PubMed ID: 37017195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dentary tooth shape in Sphenodon and its fossil relatives (Diapsida: Lepidosauria: Rhynchocephalia).
    Jones MEH
    Front Oral Biol; 2009; 13():9-15. PubMed ID: 19828962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology and postnatal ontogeny of the cranial endocast and paranasal sinuses of capybara (Hydrochoerus hydrochaeris), the largest living rodent.
    Ferreira JD; Dozo MT; de Moura Bubadué J; Kerber L
    J Morphol; 2022 Jan; 283(1):66-90. PubMed ID: 34775628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cranial and endocranial diversity in extant and fossil atelids (Platyrrhini: Atelidae): A geometric morphometric study.
    Aristide L; Strauss A; Halenar-Price LB; Gilissen E; Cruz FW; Cartelle C; Rosenberger AL; Lopes RT; Dos Reis SF; Perez SI
    Am J Phys Anthropol; 2019 Jun; 169(2):322-331. PubMed ID: 30972753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.