BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36951521)

  • 1. Airway Resistance and Respiratory Distress in Laryngeal Cancer: A Computational Fluid Dynamics Study.
    Hudson TJ; Ait Oubahou R; Mongeau L; Kost K
    Laryngoscope; 2023 Oct; 133(10):2734-2741. PubMed ID: 36951521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between degree of obstruction and airflow limitation in subglottic stenosis.
    Lin EL; Bock JM; Zdanski CJ; Kimbell JS; Garcia GJM
    Laryngoscope; 2018 Jul; 128(7):1551-1557. PubMed ID: 29171660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Application of Computational Fluid Dynamics in the Evaluation of Laryngotracheal Pathology.
    Mason EC; McGhee S; Zhao K; Chiang T; Matrka L
    Ann Otol Rhinol Laryngol; 2019 May; 128(5):453-459. PubMed ID: 30688077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1D network simulations for evaluating regional flow and pressure distributions in healthy and asthmatic human lungs.
    Choi S; Yoon S; Jeon J; Zou C; Choi J; Tawhai MH; Hoffman EA; Delvadia R; Babiskin A; Walenga R; Lin CL
    J Appl Physiol (1985); 2019 Jul; 127(1):122-133. PubMed ID: 31095459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging.
    Bates AJ; Schuh A; Amine-Eddine G; McConnell K; Loew W; Fleck RJ; Woods JC; Dumoulin CL; Amin RS
    Clin Biomech (Bristol, Avon); 2019 Jun; 66():88-96. PubMed ID: 29079097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational fluid dynamics modelling of human upper airway: A review.
    Faizal WM; Ghazali NNN; Khor CY; Badruddin IA; Zainon MZ; Yazid AA; Ibrahim NB; Razi RM
    Comput Methods Programs Biomed; 2020 Nov; 196():105627. PubMed ID: 32629222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Overview of Computational Fluid Dynamics Preoperative Analysis of the Nasal Airway.
    Xavier R; Menger DJ; de Carvalho HC; Spratley J
    Facial Plast Surg; 2021 Jun; 37(3):306-316. PubMed ID: 33556971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: An observational study.
    Radulesco T; Meister L; Bouchet G; Varoquaux A; Giordano J; Mancini J; Dessi P; Perrier P; Michel J
    Clin Otolaryngol; 2019 Jul; 44(4):603-611. PubMed ID: 31004557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Fluid Dynamics Analysis of Surgical Approaches to Bilateral Vocal Fold Immobility.
    Rios G; Morrison RJ; Song Y; Fernando SJ; Wootten C; Gelbard A; Luo H
    Laryngoscope; 2020 Feb; 130(2):E57-E64. PubMed ID: 30883777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional relevance of computational fluid dynamics in the field of nasal obstruction: A literature review.
    Radulesco T; Meister L; Bouchet G; Giordano J; Dessi P; Perrier P; Michel J
    Clin Otolaryngol; 2019 Sep; 44(5):801-809. PubMed ID: 31233660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
    Gunatilaka CC; Schuh A; Higano NS; Woods JC; Bates AJ
    Comput Biol Med; 2020 Dec; 127():104099. PubMed ID: 33152667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method to generate dynamic boundary conditions for airway CFD by mapping upper airway movement with non-rigid registration of dynamic and static MRI.
    Bates AJ; Schuh A; McConnell K; Williams BM; Lanier JM; Willmering MM; Woods JC; Fleck RJ; Dumoulin CL; Amin RS
    Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3144. PubMed ID: 30133165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human upper-airway respiratory airflow: In vivo comparison of computational fluid dynamics simulations and hyperpolarized 129Xe phase contrast MRI velocimetry.
    Xiao Q; Stewart NJ; Willmering MM; Gunatilaka CC; Thomen RP; Schuh A; Krishnamoorthy G; Wang H; Amin RS; Dumoulin CL; Woods JC; Bates AJ
    PLoS One; 2021; 16(8):e0256460. PubMed ID: 34411195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhinomanometry Versus Computational Fluid Dynamics: Correlated, but Different Techniques.
    Cherobin GB; Voegels RL; Pinna FR; Gebrim EMMS; Bailey RS; Garcia GJM
    Am J Rhinol Allergy; 2021 Mar; 35(2):245-255. PubMed ID: 32806938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upper airway reconstruction using long-range optical coherence tomography: Effects of airway curvature on airflow resistance.
    Kimbell JS; Basu S; Garcia GJM; Frank-Ito DO; Lazarow F; Su E; Protsenko D; Chen Z; Rhee JS; Wong BJ
    Lasers Surg Med; 2019 Feb; 51(2):150-160. PubMed ID: 30051633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics endpoints to characterize obstructive sleep apnea syndrome in children.
    Wootton DM; Luo H; Persak SC; Sin S; McDonough JM; Isasi CR; Arens R
    J Appl Physiol (1985); 2014 Jan; 116(1):104-12. PubMed ID: 24265282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.
    Wakayama T; Suzuki M; Tanuma T
    PLoS One; 2016; 11(3):e0150951. PubMed ID: 26943335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics.
    Patel TR; Li C; Krebs J; Zhao K; Malhotra P
    Int J Pediatr Otorhinolaryngol; 2018 Jun; 109():180-184. PubMed ID: 29728177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D phase contrast MRI in models of human airways: Validation of computational fluid dynamics simulations of steady inspiratory flow.
    Collier GJ; Kim M; Chung Y; Wild JM
    J Magn Reson Imaging; 2018 Nov; 48(5):1400-1409. PubMed ID: 29630757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.