BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36951804)

  • 1. N-Heterocyclic Imine-Supported Bimetallic Cu(II) Catalyst for Azide-Alkyne Cycloaddition: Solvent-free, Reductant-free, ppm-level Catalysis to Access 1,4-Disubstituted Triazoles.
    Revathi S; Ghatak T
    Chem Asian J; 2023 May; 18(10):e202300156. PubMed ID: 36951804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition.
    Kuang GC; Guha PM; Brotherton WS; Simmons JT; Stankee LA; Nguyen BT; Clark RJ; Zhu L
    J Am Chem Soc; 2011 Sep; 133(35):13984-4001. PubMed ID: 21809811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) by Functionalized NHC-Based Polynuclear Catalysts: Scope and Mechanistic Insights.
    González-Lainez M; Gallegos M; Munarriz J; Azpiroz R; Passarelli V; Jiménez MV; Pérez-Torrente JJ
    Organometallics; 2022 Aug; 41(15):2154-2169. PubMed ID: 35971402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azide-Alkyne "Click" Reaction in Water Using Parts-Per-Million Amine-Functionalized Azoaromatic Cu(I) Complex as Catalyst: Effect of the Amine Side Arm.
    Khatua M; Goswami B; Kamal ; Samanta S
    Inorg Chem; 2021 Dec; 60(23):17537-17554. PubMed ID: 34806366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ferrocene functionalized Schiff base containing Cu(ii) complex: synthesis, characterization and parts-per-million level catalysis for azide alkyne cycloaddition.
    Gayen FR; Ali AA; Bora D; Roy S; Saha S; Saikia L; Goswamee RL; Saha B
    Dalton Trans; 2020 May; 49(20):6578-6586. PubMed ID: 32342974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu(ii)-alginate-based superporous hydrogel catalyst for click chemistry azide-alkyne cycloaddition type reactions in water.
    Bahsis L; Ablouh EH; Anane H; Taourirte M; Julve M; Stiriba SE
    RSC Adv; 2020 Sep; 10(54):32821-32832. PubMed ID: 35516499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly active and magnetically recoverable tris(triazolyl)-Cu(I) catalyst for alkyne-azide cycloaddition reactions.
    Wang D; Etienne L; Echeverria M; Moya S; Astruc D
    Chemistry; 2014 Apr; 20(14):4047-54. PubMed ID: 24574335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A supported copper hydroxide on titanium oxide as an efficient reusable heterogeneous catalyst for 1,3-dipolar cycloaddition of organic azides to terminal alkynes.
    Yamaguchi K; Oishi T; Katayama T; Mizuno N
    Chemistry; 2009 Oct; 15(40):10464-72. PubMed ID: 19718725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CLICK-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu+ or Cu2+ to catalyze the azide-alkyne 'click' reaction in water.
    Liu K; Lat PK; Yu HZ; Sen D
    Nucleic Acids Res; 2020 Jul; 48(13):7356-7370. PubMed ID: 32520335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-Light-Mediated Click Chemistry for Highly Regioselective Azide-Alkyne Cycloaddition by a Photoredox Electron-Transfer Strategy.
    Wu ZG; Liao XJ; Yuan L; Wang Y; Zheng YX; Zuo JL; Pan Y
    Chemistry; 2020 May; 26(25):5694-5700. PubMed ID: 31953964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.
    Zhu L; Brassard CJ; Zhang X; Guha PM; Clark RJ
    Chem Rec; 2016 Jun; 16(3):1501-17. PubMed ID: 27216993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper(II)-Bis-Cyclen Intercalated Graphene Oxide as an Efficient Two-Dimensional Nanocomposite Material for Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction.
    Samuel AG; Subramanian S; Vijendran V; Bhagavathsingh J
    Front Chem; 2021; 9():754734. PubMed ID: 35071181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Click" Chemistry: Application of Copper Metal in Cu-Catalyzed Azomethine Imine-Alkyne Cycloadditions.
    Pušavec Kirar E; Grošelj U; Mirri G; Požgan F; Strle G; Štefane B; Jovanovski V; Svete J
    J Org Chem; 2016 Jul; 81(14):5988-97. PubMed ID: 27305104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Synthesis of Triazoles using Electrospray-Deposited Copper Nanomaterials to Catalyze Azide-Alkyne Cycloaddition (AAC) Click Reactions.
    Ghosh J; Cooks RG
    Chempluschem; 2022 Oct; 87(10):e202200252. PubMed ID: 36199220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper(II) complexes supported by click generated mixed NN, NO, and NS 1,2,3-triazole based ligands and their catalytic activity in azide-alkyne cycloaddition.
    Mendoza-Espinosa D; Negrón-Silva GE; Ángeles-Beltrán D; Álvarez-Hernández A; Suárez-Castillo OR; Santillán R
    Dalton Trans; 2014 May; 43(19):7069-77. PubMed ID: 24668392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu
    Liu P; Brassard CJ; Lee JP; Zhu L
    Chem Asian J; 2020 Feb; 15(3):380-390. PubMed ID: 31845533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanochemical Approach towards Multi-Functionalized 1,2,3-Triazoles and Anti-Seizure Drug Rufinamide Analogs Using Copper Beads.
    Bhattacherjee D; Kovalev IS; Kopchuk DS; Rahman M; Santra S; Zyryanov GV; Das P; Purohit R; Rusinov VL; Chupakhin ON
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper and silver complexes of tris(triazole)amine and tris(benzimidazole)amine ligands: evidence that catalysis of an azide-alkyne cycloaddition ("click") reaction by a silver tris(triazole)amine complex arises from copper impurities.
    Connell TU; Schieber C; Silvestri IP; White JM; Williams SJ; Donnelly PS
    Inorg Chem; 2014 Jul; 53(13):6503-11. PubMed ID: 24949519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Study on Cooperation Catalysis of Chiral Guanidine/ Copper(I) in Asymmetric Azide-Alkyne Cycloaddition/[2 + 2] Cascade Reaction.
    Wei Q; Zhang Y; Lv C; Hu C; Su Z
    J Org Chem; 2023 Jul; 88(14):9973-9986. PubMed ID: 37437267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the selectivity of DIFO-based reagents for intracellular bioorthogonal applications.
    Kim EJ; Kang DW; Leucke HF; Bond MR; Ghosh S; Love DC; Ahn JS; Kang DO; Hanover JA
    Carbohydr Res; 2013 Aug; 377():18-27. PubMed ID: 23770695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.