These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36952013)

  • 21. Gain from genomic selection for a selection index in two-row spring barley.
    Sweeney DW; Rooney TE; Sorrells ME
    Plant Genome; 2021 Nov; 14(3):e20138. PubMed ID: 34482639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.
    Yabe S; Yamasaki M; Ebana K; Hayashi T; Iwata H
    PLoS One; 2016; 11(4):e0153945. PubMed ID: 27115872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection.
    Labroo MR; Rutkoski JE
    BMC Genomics; 2022 Oct; 23(1):736. PubMed ID: 36316650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery.
    Hickey JM; Chiurugwi T; Mackay I; Powell W;
    Nat Genet; 2017 Aug; 49(9):1297-1303. PubMed ID: 28854179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The value of early-stage phenotyping for wheat breeding in the age of genomic selection.
    Borrenpohl D; Huang M; Olson E; Sneller C
    Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An experimental approach for estimating the genomic selection advantage for Fusarium head blight and Septoria tritici blotch in winter wheat.
    Herter CP; Ebmeyer E; Kollers S; Korzun V; Miedaner T
    Theor Appl Genet; 2019 Aug; 132(8):2425-2437. PubMed ID: 31144000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting Genetic Gain in Allogamous Crops
    Jighly A; Lin Z; Pembleton LW; Cogan NOI; Spangenberg GC; Hayes BJ; Daetwyler HD
    Front Plant Sci; 2019; 10():1364. PubMed ID: 31803197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing Genomic Selection for a Sorghum Breeding Program in Haiti: A Simulation Study.
    Muleta KT; Pressoir G; Morris GP
    G3 (Bethesda); 2019 Feb; 9(2):391-401. PubMed ID: 30530641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The power of genomic estimated breeding values for selection when using a finite population size in genetic improvement of tetraploid potato.
    Selga C; Reslow F; Pérez-Rodríguez P; Ortiz R
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34849763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls.
    de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA
    J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of genomic information on optimal contribution selection in livestock breeding programs.
    Clark SA; Kinghorn BP; Hickey JM; van der Werf JH
    Genet Sel Evol; 2013 Oct; 45(1):44. PubMed ID: 24171942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic prediction enables rapid selection of high-performing genets in an intermediate wheatgrass breeding program.
    Crain J; DeHaan L; Poland J
    Plant Genome; 2021 Jul; 14(2):e20080. PubMed ID: 33660427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population.
    O'Connor KM; Hayes BJ; Hardner CM; Alam M; Henry RJ; Topp BL
    BMC Genomics; 2021 May; 22(1):370. PubMed ID: 34016055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review.
    Anilkumar C; Sunitha NC; Harikrishna ; Devate NB; Ramesh S
    Planta; 2022 Sep; 256(5):87. PubMed ID: 36149531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits.
    Marulanda JJ; Mi X; Utz HF; Melchinger AE; Würschum T; Longin CFH
    Theor Appl Genet; 2021 Dec; 134(12):4025-4042. PubMed ID: 34618174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs.
    He J; Wu XL; Zeng Q; Li H; Ma H; Jiang J; Rosa GJM; Gianola D; Tait RG; Bauck S
    PLoS One; 2020; 15(8):e0236629. PubMed ID: 32797113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accelerating crop genetic gains with genomic selection.
    Voss-Fels KP; Cooper M; Hayes BJ
    Theor Appl Genet; 2019 Mar; 132(3):669-686. PubMed ID: 30569365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection.
    Robert P; Auzanneau J; Goudemand E; Oury FX; Rolland B; Heumez E; Bouchet S; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Mar; 135(3):895-914. PubMed ID: 34988629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic prediction of hybrid crops allows disentangling dominance and epistasis.
    González-Diéguez D; Legarra A; Charcosset A; Moreau L; Lehermeier C; Teyssèdre S; Vitezica ZG
    Genetics; 2021 May; 218(1):. PubMed ID: 33864072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation-based optimization of genomic selection scheme for accelerating genetic gain while preventing inbreeding depression in onion breeding.
    Sekine D; Yabe S
    Breed Sci; 2020 Dec; 70(5):594-604. PubMed ID: 33603556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.