These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 36952023)
41. De novo assembly and Transcriptome Analysis of the Momordica charantia Seedlings Responding to methyl jasmonate using 454 pyrosequencing. Yi S; Song X; Yu W; Zhang R; Wang W; Zhao Y; Han B; Gai Y Gene Expr Patterns; 2021 Jun; 40():119160. PubMed ID: 33253895 [TBL] [Abstract][Full Text] [Related]
42. Effects of dietary wild bitter melon (Momordica charantia var. abbreviate Ser.) extract on glucose and lipid metabolism in HFD/STZ-induced type 2 diabetic rats. Sun K; Ding M; Fu C; Li P; Li T; Fang L; Xu J; Zhao Y J Ethnopharmacol; 2023 Apr; 306():116154. PubMed ID: 36634725 [TBL] [Abstract][Full Text] [Related]
43. Telomere-to-telomere genome assembly of bitter melon ( Fu A; Zheng Y; Guo J; Grierson D; Zhao X; Wen C; Liu Y; Li J; Zhang X; Yu Y; Ma H; Wang Q; Zuo J Hortic Res; 2023; 10(1):uhac228. PubMed ID: 36643758 [No Abstract] [Full Text] [Related]
44. Cytotoxicity and maternal toxicity attributed to exposure to Trautenmuller AL; de Almeida Soares J; Behm KC; Guimarães LMM; Xavier-Silva KR; Monteiro de Melo A; Caixeta GAB; Abadia Marciano de Paula J; Luiz Cardoso Bailão EF; Amaral VCS J Toxicol Environ Health A; 2023 Jan; 86(1):36-50. PubMed ID: 36529899 [No Abstract] [Full Text] [Related]
45. Hypoglycemic and hypolipidemic effects of different parts and formulations of bitter gourd (Momordica Charantia). Mahwish ; Saeed F; Arshad MS; Nisa MU; Nadeem MT; Arshad MU Lipids Health Dis; 2017 Nov; 16(1):211. PubMed ID: 29126447 [TBL] [Abstract][Full Text] [Related]
46. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Yan JK; Wu LX; Qiao ZR; Cai WD; Ma H Food Chem; 2019 Jan; 271():588-596. PubMed ID: 30236720 [TBL] [Abstract][Full Text] [Related]
47. Transcriptome analysis provides insights into lignin synthesis and MAPK signaling pathway that strengthen the resistance of bitter gourd (Momordica charantia) to Fusarium wilt. Guan F; Shi B; Zhang J; Wan X Genomics; 2023 Jan; 115(1):110538. PubMed ID: 36494076 [TBL] [Abstract][Full Text] [Related]
48. Genome-Wide Identification of OSC Gene Family and Potential Function in the Synthesis of Ursane- and Oleanane-Type Triterpene in Han Y; Yang Y; Li Y; Yin X; Chen Z; Yang D; Yang Y; Yang Y; Yang X Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008620 [TBL] [Abstract][Full Text] [Related]
50. Momordica charantia and type 2 diabetes: from in vitro to human studies. Habicht SD; Ludwig C; Yang RY; Krawinkel MB Curr Diabetes Rev; 2014 Jan; 10(1):48-60. PubMed ID: 24295371 [TBL] [Abstract][Full Text] [Related]
51. Transcriptome analysis of five different tissues of bitter gourd (Momordica charantia L.) fruit identifies full-length genes involved in seed oil biosynthesis. Ravichandiran K; Parani M Sci Rep; 2022 Sep; 12(1):15374. PubMed ID: 36100691 [TBL] [Abstract][Full Text] [Related]
52. Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding. Xu P; Wu X; Luo J; Wang B; Liu Y; Ehlers JD; Wang S; Lu Z; Li G BMC Genomics; 2011 Sep; 12():467. PubMed ID: 21942996 [TBL] [Abstract][Full Text] [Related]
53. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves. Zhang B; Xie C; Wei Y; Li J; Yang X Protein Expr Purif; 2015 Mar; 107():43-9. PubMed ID: 25245535 [TBL] [Abstract][Full Text] [Related]
54. A mutation in LacDWARF1 results in a GA-deficient dwarf phenotype in sponge gourd (Luffa acutangula). Zhao G; Luo C; Luo J; Li J; Gong H; Zheng X; Liu X; Guo J; Zhou L; Wu H Theor Appl Genet; 2021 Oct; 134(10):3443-3457. PubMed ID: 34390352 [TBL] [Abstract][Full Text] [Related]
55. Isolation and characterization of 10 SSR markers of Momordica charantia (Cucurbitaceae). Guo DL; Zhang JP; Xue YM; Hou XG Am J Bot; 2012 May; 99(5):e182-3. PubMed ID: 22523346 [TBL] [Abstract][Full Text] [Related]
56. Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. Zhang H; Li S; Yang L; Cai G; Chen H; Gao D; Lin T; Cui Q; Wang D; Li Z; Cai R; Bai S; Lucas WJ; Huang S; Zhang Z; Sun J Plant Cell; 2021 Apr; 33(2):306-321. PubMed ID: 33793793 [TBL] [Abstract][Full Text] [Related]
57. Induction of anti-inflammatory responses by dietary Momordica charantia L. (bitter gourd). Manabe M; Takenaka R; Nakasa T; Okinaka O Biosci Biotechnol Biochem; 2003 Dec; 67(12):2512-7. PubMed ID: 14730127 [TBL] [Abstract][Full Text] [Related]
58. Identification of quantitative trait loci governing subgynoecy in cucumber. Win KT; Zhang C; Silva RR; Lee JH; Kim YC; Lee S Theor Appl Genet; 2019 May; 132(5):1505-1521. PubMed ID: 30710191 [TBL] [Abstract][Full Text] [Related]
59. Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats. Shetty AK; Kumar GS; Sambaiah K; Salimath PV Plant Foods Hum Nutr; 2005 Sep; 60(3):109-12. PubMed ID: 16187012 [TBL] [Abstract][Full Text] [Related]
60. Combined BSA-Seq and RNA-Seq to Identify Potential Genes Regulating Fruit Size in Bottle Gourd ( Fang H; Huang S; Li R; Wang P; Jiang Q; Zhong C; Yang Y; Yu W Plants (Basel); 2024 Aug; 13(15):. PubMed ID: 39124272 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]