BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36952169)

  • 1. Optical modeling of a cylindrical-hemispherical receiver for parabolic dish concentrator.
    Kumar KH; Reddy DS; Karmakar M
    Environ Sci Pollut Res Int; 2023 May; 30(22):63121-63134. PubMed ID: 36952169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of focal image for solar parabolic dish concentrator with square facets-an analytical model.
    Kopalakrishnaswami AS; Loni R; Najafi G; Natarajan SK
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):20065-20076. PubMed ID: 36251193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar parabolic dish collector for concentrated solar thermal systems: a review and recommendations.
    Kumar KH; Daabo AM; Karmakar MK; Hirani H
    Environ Sci Pollut Res Int; 2022 May; 29(22):32335-32367. PubMed ID: 35142997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of the thermal performance of heat storage-integrated solar receiver for parabolic dish collectors.
    Vishnu SK; Senthil R
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):76044-76059. PubMed ID: 37233932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of modified conical cavity receiver with other receivers for solar paraboloidal dish collector system.
    Kopalakrishnaswami AS; Natarajan SK
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7548-7558. PubMed ID: 34476708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental study on a cylindrical-conical cavity receiver for the parabolic dish collector.
    Esfanjani P; Mahmoudi A; Valipour MS; Rashidi S
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):6517-6529. PubMed ID: 35997878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods.
    Sarmah N; Richards BS; Mallick TK
    Appl Opt; 2011 Jul; 50(19):3303-10. PubMed ID: 21743533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel technique of schedule tracker for parabolic dish concentrator.
    Malviya R; Patel A; Singh A; Jagadev S; Baredar P; Kumar A
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78776-78792. PubMed ID: 37273050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy and exergy studies on the receiver models with materials and heat transfer fluids.
    Ramalingam RD; Esakkimuthu GS; Natarajan SK; Athikesavan MM
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):4764-4778. PubMed ID: 38110680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical analysis of cylindrical-parabolic concentrators: validity limits for models of solar disk intensity.
    Nicolás RO
    Appl Opt; 1987 Sep; 26(18):3866-70. PubMed ID: 20490155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferences on the effects of geometries and heat transfer fluids in multi-cavity solar receivers by using CFD.
    Duraisamy Ramalingam R; Esakkimuthu GS; Paulraj J; Abd Elnaby K; Athikesavan M; Sathyamurthy R; Vaithilingam S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32205-32217. PubMed ID: 31823252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimized approach for solar concentrating parabolic dish based on particle swarm optimization-genetic algorithm.
    Li L; Zhang Y; Li H; Liu R; Guo P
    Heliyon; 2024 Feb; 10(4):e26165. PubMed ID: 38420471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of thermal efficiency on solar parabolic collectors using phase change materials - experimental and numerical study.
    Dhanapal B; Sathyamurthy R; Kabeel AE; Thakur AK
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14719-14732. PubMed ID: 34618320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical receiving system based on a compound parabolic concentrator and a hemispherical lens for visible light communication.
    Wang Y; Lan T; Ni G
    Appl Opt; 2016 Dec; 55(36):10229-10238. PubMed ID: 28059244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers.
    Xie P; Lin H; Liu Y; Li B
    Opt Express; 2014 Oct; 22 Suppl 6():A1389-98. PubMed ID: 25607295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFD modeling and performance evaluation of an open-aperture partially evacuated receiver with internal twisted inserts in solar PTCs: energy and exergy analysis.
    Madadi Avargani V; Zendehboudi S
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43346-43368. PubMed ID: 36653690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling reflection loss from an evacuated tube inside a compound parabolic concentrator with a cylindrical receiver.
    Gajic M; Karwa N; Mojiri A; Rosengarten G
    Opt Express; 2015 Jun; 23(11):A493-501. PubMed ID: 26072874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Phase Change Material in the Design of Solar Concentrator-Based Water Heating System.
    Rizal TA; Amin M; Widodo SB; Abdul Rachman N; Amir F; Pane N; Mahlia TMI
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical analysis of deviations in a concentrating photovoltaics central receiver system with a flux homogenizer.
    Helmers H; Thor WY; Schmidt T; van Rooyen de W; Bett AW
    Appl Opt; 2013 May; 52(13):2974-84. PubMed ID: 23669763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia.
    Bekele EA; Ancha VR
    Heliyon; 2022 Sep; 8(9):e10629. PubMed ID: 36158084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.