BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36952310)

  • 1. A Dissipative Reaction Network Drives Transient Solid-Liquid and Liquid-Liquid Phase Cycling of Nanoparticles.
    Roy S; Gravener L; Philp D; Kay ER
    Angew Chem Int Ed Engl; 2023 May; 62(22):e202217613. PubMed ID: 36952310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction.
    Del Giudice D; Valentini M; Melchiorre G; Spatola E; Di Stefano S
    Chemistry; 2022 May; 28(26):e202200685. PubMed ID: 35262992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinodal decomposition of chemically fueled polymer solutions.
    Heckel J; Batti F; Mathers RT; Walther A
    Soft Matter; 2021 Jun; 17(21):5401-5409. PubMed ID: 33969370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid spherical shells are a non-equilibrium steady state of active droplets.
    Bergmann AM; Bauermann J; Bartolucci G; Donau C; Stasi M; Holtmannspötter AL; Jülicher F; Weber CA; Boekhoven J
    Nat Commun; 2023 Oct; 14(1):6552. PubMed ID: 37848445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically Powered Dissipative Hydrogel Networks Reveal Transient Stiffness Properties for Out-of-Equilibrium Operations.
    Baretta R; Frasconi M
    J Am Chem Soc; 2024 Mar; 146(11):7408-7418. PubMed ID: 38440849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative Self-Assembly of Photoluminescent Silicon Nanocrystals.
    Grötsch RK; Angı A; Mideksa YG; Wanzke C; Tena-Solsona M; Feige MJ; Rieger B; Boekhoven J
    Angew Chem Int Ed Engl; 2018 Oct; 57(44):14608-14612. PubMed ID: 30040877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids.
    Del Giudice D; Di Stefano S
    Acc Chem Res; 2023 Apr; 56(7):889-899. PubMed ID: 36916734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks.
    van Ravensteijn BGP; Voets IK; Kegel WK; Eelkema R
    Langmuir; 2020 Sep; 36(36):10639-10656. PubMed ID: 32787015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-equilibrium dissipation system with tunable molecular fuel flux.
    Yang J; Zhang T; Zhang L; Su X
    Nanoscale; 2024 Feb; 16(8):4219-4228. PubMed ID: 38334944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipative Constitutional Dynamic Networks for Tunable Transient Responses and Catalytic Functions.
    Wang S; Yue L; Wulf V; Lilienthal S; Willner I
    J Am Chem Soc; 2020 Oct; 142(41):17480-17488. PubMed ID: 32955872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-reducible dissipative nanostructures formed at the solid-liquid interface.
    Soejima T; Amako Y; Ito S; Kimizuka N
    Langmuir; 2014 Dec; 30(47):14219-25. PubMed ID: 25370594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding.
    Nikfarjam S; Gibbons R; Burni F; Raghavan SR; Anisimov MA; Woehl TJ
    Biomacromolecules; 2023 Mar; 24(3):1131-1140. PubMed ID: 36795055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy propagation through a protometabolism leading to the local emergence of singular stationary concentration profiles.
    Emond M; Le Saux T; Allemand JF; Pelupessy P; Plasson R; Jullien L
    Chemistry; 2012 Nov; 18(45):14375-83. PubMed ID: 23011974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DNA-Based Dissipation System that Synchronizes Multiple Fuels.
    Liu Y; Fu S; Liu J; Su X
    Chemistry; 2023 Jul; 29(39):e202301156. PubMed ID: 37129930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically Fueled Volume Phase Transition of Polyacid Microgels.
    Heckel J; Loescher S; Mathers RT; Walther A
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):7117-7125. PubMed ID: 33340387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient and Dissipative Host-Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel.
    Su B; Chi T; Ye Z; Xiang Y; Dong P; Liu D; Addonizio CJ; Webber MJ
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202216537. PubMed ID: 36598411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipative Organization of DNA Oligomers for Transient Catalytic Function.
    Deng J; Liu W; Sun M; Walther A
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202113477. PubMed ID: 35026052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-equilibrium dissipative supramolecular materials with a tunable lifetime.
    Tena-Solsona M; Rieß B; Grötsch RK; Löhrer FC; Wanzke C; Käsdorf B; Bausch AR; Müller-Buschbaum P; Lieleg O; Boekhoven J
    Nat Commun; 2017 Jul; 8():15895. PubMed ID: 28719591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels.
    De S; Klajn R
    Adv Mater; 2018 Oct; 30(41):e1706750. PubMed ID: 29520846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipative Gated and Cascaded DNA Networks.
    Zhou Z; Ouyang Y; Wang J; Willner I
    J Am Chem Soc; 2021 Apr; 143(13):5071-5079. PubMed ID: 33755445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.