These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36952487)
1. Which is Better for Individual Participant Data Meta-Analysis of Zero-Inflated Count Outcomes, One-Step or Two-Step Analysis? A Simulation Study. Huh D; Baldwin SA; Zhou Z; Park J; Mun EY Multivariate Behav Res; 2023; 58(6):1090-1105. PubMed ID: 36952487 [TBL] [Abstract][Full Text] [Related]
2. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study. Belias M; Rovers MM; Reitsma JB; Debray TPA; IntHout J BMC Med Res Methodol; 2019 Sep; 19(1):183. PubMed ID: 31477023 [TBL] [Abstract][Full Text] [Related]
3. A tutorial on individual participant data meta-analysis using Bayesian multilevel modeling to estimate alcohol intervention effects across heterogeneous studies. Huh D; Mun EY; Walters ST; Zhou Z; Atkins DC Addict Behav; 2019 Jul; 94():162-170. PubMed ID: 30791977 [TBL] [Abstract][Full Text] [Related]
4. A comparison of one-stage vs two-stage individual patient data meta-analysis methods: A simulation study. Kontopantelis E Res Synth Methods; 2018 Sep; 9(3):417-430. PubMed ID: 29786975 [TBL] [Abstract][Full Text] [Related]
5. A simulation study of the performance of statistical models for count outcomes with excessive zeros. Zhou Z; Li D; Huh D; Xie M; Mun EY Stat Med; 2024 Oct; 43(24):4752-4767. PubMed ID: 39193779 [TBL] [Abstract][Full Text] [Related]
6. Simulation-based power calculations for planning a two-stage individual participant data meta-analysis. Ensor J; Burke DL; Snell KIE; Hemming K; Riley RD BMC Med Res Methodol; 2018 May; 18(1):41. PubMed ID: 29776399 [TBL] [Abstract][Full Text] [Related]
7. A bias correction method in meta-analysis of randomized clinical trials with no adjustments for zero-inflated outcomes. Zhou Z; Xie M; Huh D; Mun EY Stat Med; 2021 Nov; 40(26):5894-5909. PubMed ID: 34476827 [TBL] [Abstract][Full Text] [Related]
8. Brief Alcohol Interventions are Effective through 6 Months: Findings from Marginalized Zero-inflated Poisson and Negative Binomial Models in a Two-step IPD Meta-analysis. Mun EY; Zhou Z; Huh D; Tan L; Li D; Tanner-Smith EE; Walters ST; Larimer ME Prev Sci; 2023 Nov; 24(8):1608-1621. PubMed ID: 35976524 [TBL] [Abstract][Full Text] [Related]
9. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Burke DL; Ensor J; Riley RD Stat Med; 2017 Feb; 36(5):855-875. PubMed ID: 27747915 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial. Lee KH; Pedroza C; Avritscher EBC; Mosquera RA; Tyson JE Trials; 2023 Sep; 24(1):613. PubMed ID: 37752579 [TBL] [Abstract][Full Text] [Related]
12. One-stage individual participant data meta-analysis models for continuous and binary outcomes: Comparison of treatment coding options and estimation methods. Riley RD; Legha A; Jackson D; Morris TP; Ensor J; Snell KIE; White IR; Burke DL Stat Med; 2020 Aug; 39(19):2536-2555. PubMed ID: 32394498 [TBL] [Abstract][Full Text] [Related]
13. Multilevel modeling in single-case studies with zero-inflated and overdispersed count data. Li H; Luo W; Baek E Behav Res Methods; 2024 Apr; 56(4):2765-2781. PubMed ID: 38383801 [TBL] [Abstract][Full Text] [Related]
14. One-stage random effects meta-analysis using linear mixed models for aggregate continuous outcome data. Papadimitropoulou K; Stijnen T; Dekkers OM; le Cessie S Res Synth Methods; 2019 Sep; 10(3):360-375. PubMed ID: 30523676 [TBL] [Abstract][Full Text] [Related]
15. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data. Rose CE; Martin SW; Wannemuehler KA; Plikaytis BD J Biopharm Stat; 2006; 16(4):463-81. PubMed ID: 16892908 [TBL] [Abstract][Full Text] [Related]
16. Application of marginalized zero-inflated models when mediators have excess zeroes. Sims A; Tiwari H; Levitan EB; Long D; Howard G; Brown T; Smith MJ; Cui J; Long DL Stat Methods Med Res; 2024 Jan; 33(1):148-161. PubMed ID: 38155559 [TBL] [Abstract][Full Text] [Related]
17. When does the use of individual patient data in network meta-analysis make a difference? A simulation study. Kanters S; Karim ME; Thorlund K; Anis A; Bansback N BMC Med Res Methodol; 2021 Jan; 21(1):21. PubMed ID: 33435879 [TBL] [Abstract][Full Text] [Related]
18. Population-average mediation analysis for zero-inflated count outcomes. Sims A; Long DL; Tiwari HK; Cui J; Long DM; Brown TM; Smith MJ; Levitan EB Stat Med; 2024 Jun; 43(13):2547-2559. PubMed ID: 38637330 [TBL] [Abstract][Full Text] [Related]
19. Meta-analysis of continuous outcomes: Using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment-by-baseline modification. Papadimitropoulou K; Stijnen T; Riley RD; Dekkers OM; le Cessie S Res Synth Methods; 2020 Nov; 11(6):780-794. PubMed ID: 32643264 [TBL] [Abstract][Full Text] [Related]
20. Comparison of one-step and two-step meta-analysis models using individual patient data. Mathew T; Nordström K Biom J; 2010 Apr; 52(2):271-87. PubMed ID: 20349448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]