These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 36952601)
1. Intermolecular Interactions and Electrochemical Studies on Highly Concentrated Acetate-Based Water-in-Salt and Ionic Liquid Electrolytes. Amiri M; Bélanger D J Phys Chem B; 2023 Apr; 127(13):2979-2990. PubMed ID: 36952601 [TBL] [Abstract][Full Text] [Related]
2. Traditional salt-in-water electrolyte Sundaram MM; Appadoo D Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136 [TBL] [Abstract][Full Text] [Related]
3. Understanding the electrochemistry of "water-in-salt" electrolytes: basal plane highly ordered pyrolytic graphite as a model system. Iamprasertkun P; Ejigu A; Dryfe RAW Chem Sci; 2020 Jun; 11(27):6978-6989. PubMed ID: 34122994 [TBL] [Abstract][Full Text] [Related]
4. "Water in salt/ionic liquid" electrolyte for 2.8 V aqueous lithium-ion capacitor. Dou Q; Wang Y; Wang A; Ye M; Hou R; Lu Y; Su L; Shi S; Zhang H; Yan X Sci Bull (Beijing); 2020 Nov; 65(21):1812-1822. PubMed ID: 36659121 [TBL] [Abstract][Full Text] [Related]
5. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy. Mousavi MP; Wilson BE; Kashefolgheta S; Anderson EL; He S; Bühlmann P; Stein A ACS Appl Mater Interfaces; 2016 Feb; 8(5):3396-406. PubMed ID: 26771378 [TBL] [Abstract][Full Text] [Related]
6. Physicochemical and Electrochemical Properties of Water-in-Salt Electrolytes. Amiri M; Bélanger D ChemSusChem; 2021 Jun; 14(12):2487-2500. PubMed ID: 33973406 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Girard GM; Hilder M; Zhu H; Nucciarone D; Whitbread K; Zavorine S; Moser M; Forsyth M; MacFarlane DR; Howlett PC Phys Chem Chem Phys; 2015 Apr; 17(14):8706-13. PubMed ID: 25820549 [TBL] [Abstract][Full Text] [Related]
8. Investigating the Correlation between Electrolyte Concentration and Electrochemical Properties of Ionogels. Suen JW; Elumalai NK; Debnath S; Mubarak NM; Lim CI; Reddy Moola M; Tan YS; Khalid M Molecules; 2023 Jul; 28(13):. PubMed ID: 37446854 [TBL] [Abstract][Full Text] [Related]
9. Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Liew CW; Ramesh S Carbohydr Polym; 2015 Jun; 124():222-8. PubMed ID: 25839815 [TBL] [Abstract][Full Text] [Related]
10. The Hydrotropic Effect of Ionic Liquids in Water-in-Salt Electrolytes*. Becker M; Rentsch D; Reber D; Aribia A; Battaglia C; Kühnel RS Angew Chem Int Ed Engl; 2021 Jun; 60(25):14100-14108. PubMed ID: 33786945 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular aggregation of inorganic molecules at Au(111) electrodes under a strong ionic atmosphere. Fu YC; Su YZ; Wu DY; Yan JW; Xie ZX; Mao BW J Am Chem Soc; 2009 Oct; 131(41):14728-37. PubMed ID: 19778042 [TBL] [Abstract][Full Text] [Related]
12. A promising water-in-salt electrolyte for aqueous based electrochemical energy storage cells with a wide potential window: highly concentrated HCOOK. Liu T; Tang L; Luo H; Cheng S; Liu M Chem Commun (Camb); 2019 Nov; 55(85):12817-12820. PubMed ID: 31595889 [TBL] [Abstract][Full Text] [Related]
13. Water in Protic Ionic Liquids: Properties and Use of a New Class of Electrolytes for Energy-Storage Devices. Stettner T; Gehrke S; Ray P; Kirchner B; Balducci A ChemSusChem; 2019 Aug; 12(16):3827-3836. PubMed ID: 31237420 [TBL] [Abstract][Full Text] [Related]
14. Probing Kinetics of Water-in-Salt Aqueous Batteries with Thick Porous Electrodes. Lin CH; Wang L; King ST; Bai J; Housel LM; McCarthy AH; Vila MN; Zhu H; Zhao C; Zou L; Ghose S; Xiao X; Lee WK; Takeuchi KJ; Marschilok AC; Takeuchi ES; Ge M; Chen-Wiegart YK ACS Cent Sci; 2021 Oct; 7(10):1676-1687. PubMed ID: 34729411 [TBL] [Abstract][Full Text] [Related]
15. Dilute Aqueous-Aprotic Hybrid Electrolyte Enabling a Wide Electrochemical Window through Solvation Structure Engineering. Wu S; Su B; Sun M; Gu S; Lu Z; Zhang K; Yu DYW; Huang B; Wang P; Lee CS; Zhang W Adv Mater; 2021 Oct; 33(41):e2102390. PubMed ID: 34463369 [TBL] [Abstract][Full Text] [Related]
16. Supercapacitive Properties of Micropore- and Mesopore-Rich Activated Carbon in Ionic-Liquid Electrolytes with Various Constituent Ions. Nguyen QD; Patra J; Hsieh CT; Li J; Dong QF; Chang JK ChemSusChem; 2019 Jan; 12(2):449-456. PubMed ID: 30548119 [TBL] [Abstract][Full Text] [Related]
17. Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors. Dong S; Wang Y; Chen C; Shen L; Zhang X Nanomicro Lett; 2020 Aug; 12(1):168. PubMed ID: 34138154 [TBL] [Abstract][Full Text] [Related]
18. Tuning pyridinic-N and graphitic-N doping with 4,4'-bipyridine in honeycomb-like porous carbon and distinct electrochemical roles in aqueous and ionic liquid gel electrolytes for symmetric supercapacitors. Gu J; Wang H; Li S; Sohail Riaz M; Ning J; Pu X; Hu Y J Colloid Interface Sci; 2023 Apr; 635():254-264. PubMed ID: 36587577 [TBL] [Abstract][Full Text] [Related]
19. Highly Safe Ionic Liquid Electrolytes for Sodium-Ion Battery: Wide Electrochemical Window and Good Thermal Stability. Wu F; Zhu N; Bai Y; Liu L; Zhou H; Wu C ACS Appl Mater Interfaces; 2016 Aug; 8(33):21381-6. PubMed ID: 27454818 [TBL] [Abstract][Full Text] [Related]
20. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Zhang C; Zhang L; Yu G Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]