These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36958016)

  • 1. Bioactive Spinal Cord Scaffold Releasing Neurotrophic Exosomes to Promote
    Mi S; Chang Z; Wang X; Gao J; Liu Y; Liu W; He W; Qi Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):16355-16368. PubMed ID: 36958016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantation with SHED sheet induced with homogenate protein of spinal cord promotes functional recovery from spinal cord injury in rats.
    Mi S; Wang X; Gao J; Liu Y; Qi Z
    Front Bioeng Biotechnol; 2023; 11():1119639. PubMed ID: 36998812
    [No Abstract]   [Full Text] [Related]  

  • 3. Exosomes Derived from miR-126-modified MSCs Promote Angiogenesis and Neurogenesis and Attenuate Apoptosis after Spinal Cord Injury in Rats.
    Huang JH; Xu Y; Yin XM; Lin FY
    Neuroscience; 2020 Jan; 424():133-145. PubMed ID: 31704348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis.
    Zhou W; Silva M; Feng C; Zhao S; Liu L; Li S; Zhong J; Zheng W
    Stem Cell Res Ther; 2021 Mar; 12(1):174. PubMed ID: 33712072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exosomes Derived from Bone Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by Suppressing the Activation of A1 Neurotoxic Reactive Astrocytes.
    Liu W; Wang Y; Gong F; Rong Y; Luo Y; Tang P; Zhou Z; Zhou Z; Xu T; Jiang T; Yang S; Yin G; Chen J; Fan J; Cai W
    J Neurotrauma; 2019 Feb; 36(3):469-484. PubMed ID: 29848167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exosomes derived from NGF-overexpressing bone marrow mesenchymal stem cell sheet promote spinal cord injury repair in a mouse model.
    Li S; Liao X; He Y; Chen R; Zheng WV; Tang M; Guo X; Chen J; Hu S; Sun J
    Neurochem Int; 2022 Jul; 157():105339. PubMed ID: 35429578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NSCs Migration Promoted and Drug Delivered Exosomes-Collagen Scaffold via a Bio-Specific Peptide for One-Step Spinal Cord Injury Repair.
    Zhang L; Fan C; Hao W; Zhuang Y; Liu X; Zhao Y; Chen B; Xiao Z; Chen Y; Dai J
    Adv Healthc Mater; 2021 Apr; 10(8):e2001896. PubMed ID: 33522126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combination of GDNF and hUCMSC transplantation loaded on SF/AGs composite scaffolds for spinal cord injury repair.
    Jiao G; Lou G; Mo Y; Pan Y; Zhang Z; Guo R; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():230-237. PubMed ID: 28254289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair.
    Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J
    Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair.
    Zou Y; Ma D; Shen H; Zhao Y; Xu B; Fan Y; Sun Z; Chen B; Xue W; Shi Y; Xiao Z; Gu R; Dai J
    Biomater Sci; 2020 Sep; 8(18):5145-5156. PubMed ID: 32832944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.
    Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z
    Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
    Fan L; Dong J; He X; Zhang C; Zhang T
    Hum Exp Toxicol; 2021 Oct; 40(10):1612-1623. PubMed ID: 33779331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral Nerve-Derived Stem Cell Spheroids Induce Functional Recovery and Repair after Spinal Cord Injury in Rodents.
    Lee HL; Yeum CE; Lee H; Oh J; Kim JT; Lee WJ; Ha Y; Yang YI; Kim KN
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33923671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Attenuates Apoptosis, Inflammation, and Promotes Angiogenesis after Spinal Cord Injury in Rats.
    Huang JH; Yin XM; Xu Y; Xu CC; Lin X; Ye FB; Cao Y; Lin FY
    J Neurotrauma; 2017 Dec; 34(24):3388-3396. PubMed ID: 28665182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binary scaffold facilitates in situ regeneration of axons and neurons for complete spinal cord injury repair.
    Liu D; Shu M; Liu W; Shen Y; Long G; Zhao Y; Hou X; Xiao Z; Dai J; Li X
    Biomater Sci; 2021 Apr; 9(8):2955-2971. PubMed ID: 33634811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF
    Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury.
    Li X; Tan J; Xiao Z; Zhao Y; Han S; Liu D; Yin W; Li J; Li J; Wanggou S; Chen B; Ren C; Jiang X; Dai J
    Sci Rep; 2017 Mar; 7():43559. PubMed ID: 28262732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.