These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36958237)

  • 1. HeadTailTransfer: An efficient sampling method to improve the performance of graph neural network method in predicting sparse ncRNA-protein interactions.
    Wei J; Zhuo L; Pan S; Lian X; Yao X; Fu X
    Comput Biol Med; 2023 May; 157():106783. PubMed ID: 36958237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks.
    Shen ZA; Luo T; Zhou YK; Yu H; Du PF
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning.
    Zhuo L; Song B; Liu Y; Li Z; Fu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36063562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NPI-DCGNN: An Accurate Tool for Identifying ncRNA-Protein Interactions Using a Dual-Channel Graph Neural Network.
    Zhang X; Zhao L; Chai Z; Wu H; Yang W; Li C; Jiang Y; Liu Q
    J Comput Biol; 2024 Aug; 31(8):742-756. PubMed ID: 38923911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Neural Network with Self-Supervised Learning for Noncoding RNA-Drug Resistance Association Prediction.
    Zheng J; Qian Y; He J; Kang Z; Deng L
    J Chem Inf Model; 2022 Aug; 62(15):3676-3684. PubMed ID: 35838124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for predicting ncRNA-protein interactions based on graph neural networks and community detection.
    Zhuo L; Chen Y; Song B; Liu Y; Su Y
    Methods; 2022 Nov; 207():74-80. PubMed ID: 36108992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction.
    Yan J; Qu W; Li X; Wang R; Tan J
    Comput Biol Chem; 2024 Feb; 108():108000. PubMed ID: 38070456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RPITER: A Hierarchical Deep Learning Framework for ncRNA⁻Protein Interaction Prediction.
    Peng C; Han S; Zhang H; Li Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery.
    Zhang Y; Li X
    J Chem Inf Model; 2024 Apr; 64(8):3537-3547. PubMed ID: 38523272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information.
    Yi HC; You ZH; Wang MN; Guo ZH; Wang YB; Zhou JR
    BMC Bioinformatics; 2020 Feb; 21(1):60. PubMed ID: 32070279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive review and evaluation of graph neural networks for non-coding RNA and complex disease associations.
    Hu X; Liu D; Zhang J; Fan Y; Ouyang T; Luo Y; Zhang Y; Deng L
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MHAM-NPI: Predicting ncRNA-protein interactions based on multi-head attention mechanism.
    Zhou Z; Du Z; Wei J; Zhuo L; Pan S; Fu X; Lian X
    Comput Biol Med; 2023 Sep; 163():107143. PubMed ID: 37339574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DM-RPIs: Predicting ncRNA-protein interactions using stacked ensembling strategy.
    Cheng S; Zhang L; Tan J; Gong W; Li C; Zhang X
    Comput Biol Chem; 2019 Dec; 83():107088. PubMed ID: 31330489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction.
    Pan X; Fan YX; Yan J; Shen HB
    BMC Genomics; 2016 Aug; 17():582. PubMed ID: 27506469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identify ncRNA Subcellular Localization via Graph Regularized k-Local Hyperplane Distance Nearest Neighbor Model on Multi-Kernel Learning.
    Zhou H; Wang H; Tang J; Ding Y; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3517-3529. PubMed ID: 34432632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RPI-EDLCN: An Ensemble Deep Learning Framework Based on Capsule Network for ncRNA-Protein Interaction Prediction.
    Li X; Qu W; Yan J; Tan J
    J Chem Inf Model; 2024 Apr; 64(7):2221-2235. PubMed ID: 37158609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ncRPI-LGAT: Prediction of ncRNA-protein interactions with line graph attention network framework.
    Han Y; Zhang SW
    Comput Struct Biotechnol J; 2023; 21():2286-2295. PubMed ID: 37035546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ML-NPI: Predicting Interactions between Noncoding RNA and Protein Based on Meta-Learning in a Large-Scale Dynamic Graph.
    Wang T; Wang W; Jiang X; Mao J; Zhuo L; Liu M; Fu X; Yao X
    J Chem Inf Model; 2024 Apr; 64(7):2912-2920. PubMed ID: 37920888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.