These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36959198)
1. Simulating flexibility, variability and decentralisation with an integrated energy system model for Great Britain. Chaudry M; Jayasuriya L; Hall JW; Jenkins N; Eyre N; Eggimann S Sci Rep; 2023 Mar; 13(1):4772. PubMed ID: 36959198 [TBL] [Abstract][Full Text] [Related]
2. What energy infrastructure will be needed by 2050 in the EU to support 1.5°C scenarios? Arduin I; Andrey C; Bossmann T F1000Res; 2022; 11():387. PubMed ID: 35529282 [No Abstract] [Full Text] [Related]
3. Linear programing formulation of a high temporal and technological resolution integrated energy system model for the energy transition. Sánchez Diéguez M; Fattahi A; Sijm J; Morales España G; Faaij A MethodsX; 2022; 9():101732. PubMed ID: 35646617 [TBL] [Abstract][Full Text] [Related]
4. Deep decarbonization of urban energy systems through renewable energy and sector-coupling flexibility strategies. Arabzadeh V; Mikkola J; Jasiūnas J; Lund PD J Environ Manage; 2020 Apr; 260():110090. PubMed ID: 32090816 [TBL] [Abstract][Full Text] [Related]
5. Designing optimal integrated electricity supply configurations for renewable hydrogen generation in Australia. Ali Khan MH; Daiyan R; Han Z; Hablutzel M; Haque N; Amal R; MacGill I iScience; 2021 Jun; 24(6):102539. PubMed ID: 34142047 [TBL] [Abstract][Full Text] [Related]
6. Global transcontinental power pools for low-carbon electricity. Yang H; Deshmukh R; Suh S Nat Commun; 2023 Dec; 14(1):8350. PubMed ID: 38102120 [TBL] [Abstract][Full Text] [Related]
7. High-resolution electricity generation mixes in building operation: A methodological framework for energy and environmental impacts and the case study of an Italian net zero energy building. Mistretta M; Brunetti A; Cellura M; Guarino F; Longo S Sci Total Environ; 2024 Jul; 933():172751. PubMed ID: 38679104 [TBL] [Abstract][Full Text] [Related]
8. Twelve Principles for Green Energy Storage in Grid Applications. Arbabzadeh M; Johnson JX; Keoleian GA; Rasmussen PG; Thompson LT Environ Sci Technol; 2016 Jan; 50(2):1046-55. PubMed ID: 26629882 [TBL] [Abstract][Full Text] [Related]
9. Electricity generation: options for reduction in carbon emissions. Whittington HW Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490 [TBL] [Abstract][Full Text] [Related]
10. Changing economics of China's power system suggest that batteries and renewables may be a lower cost way to meet peak demand growth than coal. Kahrl F; Lin J iScience; 2024 Feb; 27(2):108975. PubMed ID: 38327799 [TBL] [Abstract][Full Text] [Related]
11. Sustainable Low-Carbon Expansion for the Power Sector of an Emerging Economy: The Case of Kenya. Carvallo JP; Shaw BJ; Avila NI; Kammen DM Environ Sci Technol; 2017 Sep; 51(17):10232-10242. PubMed ID: 28783318 [TBL] [Abstract][Full Text] [Related]
12. Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies. Moreno R; Street A; Arroyo JM; Mancarella P Philos Trans A Math Phys Eng Sci; 2017 Aug; 375(2100):. PubMed ID: 29052551 [TBL] [Abstract][Full Text] [Related]
13. Operational Scheduling of Behind-the-Meter Storage Systems Based on Multiple Nonstationary Decomposition and Deep Convolutional Neural Network for Price Forecasting. Deng Z; Qi X; Xu T; Zheng Y Comput Intell Neurosci; 2022; 2022():9326856. PubMed ID: 35237313 [TBL] [Abstract][Full Text] [Related]
14. An integrated framework for optimal infrastructure planning for decarbonising heating. Hoseinpoori P; Woods J; Shah N MethodsX; 2023; 10():102184. PubMed ID: 37168775 [TBL] [Abstract][Full Text] [Related]
15. Inefficient Building Electrification Will Require Massive Buildout of Renewable Energy and Seasonal Energy Storage. Buonocore JJ; Salimifard P; Magavi Z; Allen JG Sci Rep; 2022 Jul; 12(1):11931. PubMed ID: 35831376 [TBL] [Abstract][Full Text] [Related]
17. Optimized Demand-Side Day-Ahead Generation Scheduling Model for a Wind-Photovoltaic-Energy Storage Hydrogen Production System. Chen K; Peng H; Zhang J; Chen P; Ruan J; Li B; Wang Y ACS Omega; 2022 Nov; 7(47):43036-43044. PubMed ID: 36519112 [TBL] [Abstract][Full Text] [Related]
18. Long-term production technology mix of alternative fuels for road transport: A focus on Spain. Navas-Anguita Z; García-Gusano D; Iribarren D Energy Convers Manag; 2020 Dec; 226():113498. PubMed ID: 33052157 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the most likely low-emission electricity production systems in Estonia. Baird ZS; Neshumayev D; Järvik O; Powell KM PLoS One; 2021; 16(12):e0261780. PubMed ID: 34968401 [TBL] [Abstract][Full Text] [Related]
20. Assessment of end-of-life electric vehicle batteries in China: Future scenarios and economic benefits. Jiang S; Zhang L; Hua H; Liu X; Wu H; Yuan Z Waste Manag; 2021 Nov; 135():70-78. PubMed ID: 34478950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]