These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36959357)

  • 1. Machine learning at the edge for AI-enabled multiplexed pathogen detection.
    Ganjalizadeh V; Meena GG; Stott MA; Hawkins AR; Schmidt H
    Sci Rep; 2023 Mar; 13(1):4744. PubMed ID: 36959357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Enabled Universal Multiplexed Fluorescence Detection for Point-of-Care Applications.
    Kshirsagar A; Politza AJ; Guan W
    ACS Sens; 2024 Aug; 9(8):4017-4027. PubMed ID: 39010300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening.
    Meena GG; Wall TA; Stott MA; Brown O; Robison R; Hawkins AR; Schmidt H
    Opt Express; 2020 Oct; 28(22):33019-33027. PubMed ID: 33114971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-channel velocity multiplexing of single virus detection on an optofluidic chip.
    Black JA; Ganjalizadeh V; Parks JW; Schmidt H
    Opt Lett; 2018 Sep; 43(18):4425-4428. PubMed ID: 30211881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis.
    Gong CA; Su CS; Liu YE; Guu DY; Chen YH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IoT-Enabled WBAN and Machine Learning for Speech Emotion Recognition in Patients.
    Olatinwo DD; Abu-Mahfouz A; Hancke G; Myburgh H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection.
    Amin MN; Ganjalizadeh V; Hamblin M; Hawkins AR; Schmidt H
    IEEE Photonics Technol Lett; 2021 Aug; 33(16):884-887. PubMed ID: 34744399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of nucleic acid amplification on ISFET arrays using spectrogram-based neural networks.
    Tripathi P; Gulli C; Broomfield J; Alexandrou G; Kalofonou M; Bevan C; Moser N; Georgiou P
    Comput Biol Med; 2023 Jul; 161():107027. PubMed ID: 37211003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNN-PNN: A parallel deep neural network model to improve anticancer drug sensitivity.
    Chen S; Yang Y; Zhou H; Sun Q; Su R
    Methods; 2023 Jan; 209():1-9. PubMed ID: 36410694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast custom wavelet analysis technique for single molecule detection and identification.
    Ganjalizadeh V; Meena GG; Wall TA; Stott MA; Hawkins AR; Schmidt H
    Nat Commun; 2022 Feb; 13(1):1035. PubMed ID: 35210454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge deep learning for neural implants: a case study of seizure detection and prediction.
    Liu X; Richardson AG
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33794507
    [No Abstract]   [Full Text] [Related]  

  • 12. On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood.
    Cai H; Stott MA; Ozcelik D; Parks JW; Hawkins AR; Schmidt H
    Biomicrofluidics; 2016 Nov; 10(6):064116. PubMed ID: 28058082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive detection of SARS-CoV-2 RNA and antigen using single-molecule optofluidic chip.
    Meena GG; Stambaugh AM; Ganjalizadeh V; Stott MA; Hawkins AR; Schmidt H
    APL Photonics; 2021 Jun; 6(6):. PubMed ID: 35693725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Spatial-Spectral Multiplexing of Single-Virus Detection Using Multimode Interference Waveguides.
    Ozcelik D; Jain A; Stambaugh A; Stott MA; Parks JW; Hawkins A; Schmidt H
    Sci Rep; 2017 Sep; 7(1):12199. PubMed ID: 28939852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid detection of Pseudomonas aeruginosa based on lab-on-a-chip platform using immunomagnetic separation, light scattering, and machine learning.
    Hussain M; Liu X; Tang S; Zou J; Wang Z; Ali Z; He N; Tang Y
    Anal Chim Acta; 2022 Jan; 1189():339223. PubMed ID: 34815054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FPGA Integrated Optofluidic Biosensor for Real-Time Single Biomarker Analysis.
    Sampad MJN; Amin MN; Hawkins AR; Schmidt H
    IEEE Photonics J; 2022 Feb; 14(1):. PubMed ID: 34900090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
    Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR
    IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning models of 6-lead ECGs for the interpretation of left ventricular hypertrophy (LVH).
    Dwivedi T; Xue J; Treiman D; Dubey A; Albert D
    J Electrocardiol; 2023; 77():62-67. PubMed ID: 36641988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of infectious disease-associated host genes using machine learning techniques.
    Barman RK; Mukhopadhyay A; Maulik U; Das S
    BMC Bioinformatics; 2019 Dec; 20(1):736. PubMed ID: 31881961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic wavelength division multiplexing for single-virus detection.
    Ozcelik D; Parks JW; Wall TA; Stott MA; Cai H; Parks JW; Hawkins AR; Schmidt H
    Proc Natl Acad Sci U S A; 2015 Oct; 112(42):12933-7. PubMed ID: 26438840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.