These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36959439)

  • 1. Homology Modeling in the Twilight Zone: Improved Accuracy by Sequence Space Analysis.
    Ben Boubaker R; Tiss A; Henrion D; Chabbert M
    Methods Mol Biol; 2023; 2627():1-23. PubMed ID: 36959439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact-Assisted Threading in Low-Homology Protein Modeling.
    Bhattacharya S; Roche R; Shuvo MH; Moussad B; Bhattacharya D
    Methods Mol Biol; 2023; 2627():41-59. PubMed ID: 36959441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enriching the sequence substitution matrix by structural information.
    Teodorescu O; Galor T; Pillardy J; Elber R
    Proteins; 2004 Jan; 54(1):41-8. PubMed ID: 14705022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a putative invertebrate helical cytokine similar to the ciliary neurotrophic factor/leukemia inhibitory factor family by PSI-BLAST-based approach.
    Cheng G; Zhao X; Li Z; Liu X; Yan W; Zhang X; Zhong Y; Zheng Z
    J Interferon Cytokine Res; 2009 Aug; 29(8):461-8. PubMed ID: 19514841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-homology protein threading.
    Peng J; Xu J
    Bioinformatics; 2010 Jun; 26(12):i294-300. PubMed ID: 20529920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.
    Kurgan L; Cios K; Chen K
    BMC Bioinformatics; 2008 May; 9():226. PubMed ID: 18452616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.
    Meier A; Söding J
    PLoS Comput Biol; 2015 Oct; 11(10):e1004343. PubMed ID: 26496371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins.
    Zheng W; Zhang C; Wuyun Q; Pearce R; Li Y; Zhang Y
    Nucleic Acids Res; 2019 Jul; 47(W1):W429-W436. PubMed ID: 31081035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Illuminating the "Twilight Zone": Advances in Difficult Protein Modeling.
    Bartuzi D; Kaczor AA; Matosiuk D
    Methods Mol Biol; 2023; 2627():25-40. PubMed ID: 36959440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HomPPI: a class of sequence homology based protein-protein interface prediction methods.
    Xue LC; Dobbs D; Honavar V
    BMC Bioinformatics; 2011 Jun; 12():244. PubMed ID: 21682895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins.
    Forrest LR; Tang CL; Honig B
    Biophys J; 2006 Jul; 91(2):508-17. PubMed ID: 16648166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FALCON@home: a high-throughput protein structure prediction server based on remote homologue recognition.
    Wang C; Zhang H; Zheng WM; Xu D; Zhu J; Wang B; Ning K; Sun S; Li SC; Bu D
    Bioinformatics; 2016 Feb; 32(3):462-4. PubMed ID: 26454278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. I-TASSER: fully automated protein structure prediction in CASP8.
    Zhang Y
    Proteins; 2009; 77 Suppl 9(Suppl 9):100-13. PubMed ID: 19768687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural explanation for the twilight zone of protein sequence homology.
    Chung SY; Subbiah S
    Structure; 1996 Oct; 4(10):1123-7. PubMed ID: 8939745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein threading using residue co-variation and deep learning.
    Zhu J; Wang S; Bu D; Xu J
    Bioinformatics; 2018 Jul; 34(13):i263-i273. PubMed ID: 29949980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PSS-3D1D: an improved 3D1D profile method of protein fold recognition for the annotation of twilight zone sequences.
    Ganesan K; Parthasarathy S
    J Struct Funct Genomics; 2011 Dec; 12(4):181-9. PubMed ID: 22160493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteinaceous pheromone affecting female receptivity in a terrestrial salamander.
    Rollmann SM; Houck LD; Feldhoff RC
    Science; 1999 Sep; 285(5435):1907-9. PubMed ID: 10489368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does inclusion of residue-residue contact information boost protein threading?
    Bhattacharya S; Bhattacharya D
    Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.