These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 36960347)
1. From the teapot effect to tap-triggered self-wetting: a 3D self-driving sieve for whole blood filtration. Li Y; Li X; Zhang L; Luan X; Jiang J; Zhang L; Li M; Wang J; Duan J; Zhao H; Zhao Y; Huang C Microsyst Nanoeng; 2023; 9():30. PubMed ID: 36960347 [TBL] [Abstract][Full Text] [Related]
2. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction. Zhang Y; Li Y; Luan X; Li X; Jiang J; Fan Y; Li M; Huang C; Zhang L; Zhao Y Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671861 [TBL] [Abstract][Full Text] [Related]
3. 2.5-Dimensional Parylene C micropore array with a large area and a high porosity for high-throughput particle and cell separation. Liu Y; Xu H; Dai W; Li H; Wang W Microsyst Nanoeng; 2018; 4():13. PubMed ID: 31057901 [TBL] [Abstract][Full Text] [Related]
4. Selective, user-friendly, highly porous, efficient, and rapid (SUPER) filter for isolation and analysis of rare tumor cells. Zhao K; Liu Y; Wang H; Song Y; Chen X; Huang C; Niu Q; Cao J; Chen X; Wang W; Wu L; Yang C Lab Chip; 2022 Jan; 22(2):367-376. PubMed ID: 34918732 [TBL] [Abstract][Full Text] [Related]
5. Filtration characteristics of the polyester fiber micropore blood transfusion filter. Risberg BI; Hurley MJ; Miller E; deJongh DS; Litwin MS South Med J; 1979 Jun; 72(6):657-60, 666. PubMed ID: 451646 [TBL] [Abstract][Full Text] [Related]
7. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. Liu Y; Li T; Xu M; Zhang W; Xiong Y; Nie L; Wang Q; Li H; Wang W Lab Chip; 2018 Dec; 19(1):68-78. PubMed ID: 30516210 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic diffusive filter for apheresis (leukapheresis). Sethu P; Sin A; Toner M Lab Chip; 2006 Jan; 6(1):83-9. PubMed ID: 16372073 [TBL] [Abstract][Full Text] [Related]
9. Portable vibration-assisted filtration device for on-site isolation of blood cells or pathogenic bacteria from whole human blood. Kim YT; Park KJ; Kim S; Kim SA; Lee SJ; Kim DH; Lee TJ; Lee KG Talanta; 2018 Mar; 179():207-212. PubMed ID: 29310223 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic filtration system to isolate extracellular vesicles from blood. Davies RT; Kim J; Jang SC; Choi EJ; Gho YS; Park J Lab Chip; 2012 Dec; 12(24):5202-10. PubMed ID: 23111789 [TBL] [Abstract][Full Text] [Related]
11. Whole blood leukocytes isolation with microfabricated filter for cell analysis. Yu L; Warner P; Warner B; Recktenwald D; Yamanishi D; Guia A; Ghetti A Cytometry A; 2011 Dec; 79(12):1009-15. PubMed ID: 22110022 [TBL] [Abstract][Full Text] [Related]
12. A scalable, micropore, platelet rich plasma separation device. Dickson MN; Amar L; Hill M; Schwartz J; Leonard EF Biomed Microdevices; 2012 Dec; 14(6):1095-102. PubMed ID: 22811077 [TBL] [Abstract][Full Text] [Related]
13. Efficiency of leukocyte removal by filters made of superfine glass fiber membranes. Zou Y; Sun Q; Li A; Yao F; Hu Z; Li Z L; Ma W Vox Sang; 1999; 76(1):22-6. PubMed ID: 9933850 [TBL] [Abstract][Full Text] [Related]
14. Recovery of platelet-rich red blood cells and acquisition of convalescent plasma with a novel gravity-driven blood separation device. Osemwengie D; Lagerberg JW; Vlaar R; Gouwerok E; Go M; Nierich AP; de Korte D Transfus Med; 2022 Feb; 32(1):53-63. PubMed ID: 34761451 [TBL] [Abstract][Full Text] [Related]
15. A method for evaluating the influence of porosity on the early reactions of blood with materials. Malmberg P; Nygren H Biomaterials; 2002 Jan; 23(1):247-53. PubMed ID: 11762844 [TBL] [Abstract][Full Text] [Related]
16. [Performance of Pall filters (RC 100 and PL 100) for the removal of leukocytes from red-cell concentrates and platelets]. Hurel C; Sabolic V; Habibi B Rev Fr Transfus Hemobiol; 1989 Sep; 32(4):307-22. PubMed ID: 2818773 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of operating flux in a membrane bio-reactor coupled with a mechanical sieve unit. Park S; Yeon KM; Moon S; Kim JO Chemosphere; 2018 Jan; 191():573-579. PubMed ID: 29073566 [TBL] [Abstract][Full Text] [Related]
18. Bioinspired Manufacturing of Aerogels with Precisely Manipulated Surface Microstructure through Controlled Local Temperature Gradients. Tetik H; Feng D; Oxandale SW; Yang G; Zhao K; Feist K; Shah N; Liao Y; Leseman ZC; Lin D ACS Appl Mater Interfaces; 2021 Jan; 13(1):924-931. PubMed ID: 33397082 [TBL] [Abstract][Full Text] [Related]
19. Preparation and properties of PTFE hollow fiber membranes for the removal of ultrafine particles in PM Xu H; Jin W; Wang F; Li C; Wang J; Zhu H; Guo Y RSC Adv; 2018 Nov; 8(67):38245-38258. PubMed ID: 35559087 [TBL] [Abstract][Full Text] [Related]
20. Multidimensional Building Blocks for Molecular Sieve Membranes. Ban Y; Yang W Acc Chem Res; 2022 Nov; 55(21):3162-3177. PubMed ID: 36269843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]