These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36960450)
1. TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides. Zhou W; Liu Y; Li Y; Kong S; Wang W; Ding B; Han J; Mou C; Gao X; Liu J Patterns (N Y); 2023 Mar; 4(3):100702. PubMed ID: 36960450 [TBL] [Abstract][Full Text] [Related]
2. Protocol for predicting peptides with anticancer and antimicrobial properties by a tri-fusion neural network. Han J; Zhang S; Liu J STAR Protoc; 2023 Sep; 4(3):102541. PubMed ID: 37660298 [TBL] [Abstract][Full Text] [Related]
3. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning. Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420 [TBL] [Abstract][Full Text] [Related]
4. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410 [TBL] [Abstract][Full Text] [Related]
5. ACP-BC: A Model for Accurate Identification of Anticancer Peptides Based on Fusion Features of Bidirectional Long Short-Term Memory and Chemically Derived Information. Sun M; Hu H; Pang W; Zhou Y Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895128 [TBL] [Abstract][Full Text] [Related]
6. PepNet: an interpretable neural network for anti-inflammatory and antimicrobial peptides prediction using a pre-trained protein language model. Han J; Kong T; Liu J Commun Biol; 2024 Sep; 7(1):1198. PubMed ID: 39341947 [TBL] [Abstract][Full Text] [Related]
7. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291 [TBL] [Abstract][Full Text] [Related]
8. ACP-check: An anticancer peptide prediction model based on bidirectional long short-term memory and multi-features fusion strategy. Zhu L; Ye C; Hu X; Yang S; Zhu C Comput Biol Med; 2022 Sep; 148():105868. PubMed ID: 35868046 [TBL] [Abstract][Full Text] [Related]
9. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning. Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073 [TBL] [Abstract][Full Text] [Related]
10. CancerGram: An Effective Classifier for Differentiating Anticancer from Antimicrobial Peptides. Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Bąkała M; Słowik J; Gagat P Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33142753 [TBL] [Abstract][Full Text] [Related]
11. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation. Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345 [TBL] [Abstract][Full Text] [Related]
12. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion. Cao R; Wang M; Bin Y; Zheng C PeerJ; 2021; 9():e11906. PubMed ID: 34414035 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial peptide identification using multi-scale convolutional network. Su X; Xu J; Yin Y; Quan X; Zhang H BMC Bioinformatics; 2019 Dec; 20(1):730. PubMed ID: 31870282 [TBL] [Abstract][Full Text] [Related]
14. DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm. Yu L; Jing R; Liu F; Luo J; Li Y Mol Ther Nucleic Acids; 2020 Dec; 22():862-870. PubMed ID: 33230481 [TBL] [Abstract][Full Text] [Related]
15. ACP-ESM: A novel framework for classification of anticancer peptides using protein-oriented transformer approach. Kilimci ZH; Yalcin M Artif Intell Med; 2024 Oct; 156():102951. PubMed ID: 39173421 [TBL] [Abstract][Full Text] [Related]
16. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model. Wang H; Zhao J; Zhao H; Li H; Wang J BMC Bioinformatics; 2021 Oct; 22(1):512. PubMed ID: 34670488 [TBL] [Abstract][Full Text] [Related]
17. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure. Yan K; Lv H; Guo Y; Peng W; Liu B Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342186 [TBL] [Abstract][Full Text] [Related]
18. MA-PEP: A novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism. Liang X; Zhao H; Wang J Protein Sci; 2024 Apr; 33(4):e4966. PubMed ID: 38532681 [TBL] [Abstract][Full Text] [Related]
19. Diff-AMP: tailored designed antimicrobial peptide framework with all-in-one generation, identification, prediction and optimization. Wang R; Wang T; Zhuo L; Wei J; Fu X; Zou Q; Yao X Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38446739 [TBL] [Abstract][Full Text] [Related]
20. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder. Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]