These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3696064)

  • 1. Determination of the kerma factors in tissue-equivalent plastic, C, Mg, and Fe for 14.7-MeV neutrons.
    Wuu CS; Milavickas LR
    Med Phys; 1987; 14(6):1007-14. PubMed ID: 3696064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental kerma coefficients and dose distributions of C, N, O, Mg, Al, Si, Fe, Zr, A-150 plastic, Al203, AlN, SiO2 and ZrO2 for neutron energies up to 66 MeV.
    Schrewe UJ; Newhauser WD; Brede HJ; DeLuca PM
    Phys Med Biol; 2000 Mar; 45(3):651-83. PubMed ID: 10730963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kerma factor of carbon for 14.1-MeV neutrons.
    DeLuca PM; Barschall HH; Haight RC; McDonald JC
    Radiat Res; 1984 Oct; 100(1):78-86. PubMed ID: 6494433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calorimetric and ionimetric dosimetry intercomparisons I: U.S. neutron radiotherapy centers.
    McDonald JC; Ma IC; Liang J; Eenmaa J; Awschalom M; Smathers JB; Graves R; August LS; Shapiro P
    Med Phys; 1981; 8(1):39-43. PubMed ID: 7207426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of tissue-equivalent ionization chamber to 15-MeV neutrons.
    Barschall HH; Goldberg E
    Med Phys; 1977; 4(2):141-4. PubMed ID: 850510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A consistent set of neutron kerma coefficients from thermal to 150 MeV for biologically important materials.
    Chadwick MB; Barschall HH; Caswell RS; DeLuca PM; Hale GM; Jones DT; MacFarlane RE; Meulders JP; Schuhmacher H; Schrewe UJ; Wambersie A; Young PG
    Med Phys; 1999 Jun; 26(6):974-91. PubMed ID: 10436900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calorimetric measurement of the carbon kerma factor for 14.6-MeV neutrons.
    McDonald JC
    Radiat Res; 1987 Jan; 109(1):28-35. PubMed ID: 3809390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of dose distributions of linear energy transfer in matter irradiated by fast neutrons.
    Schell MC; Pearson DW; DeLuca PM; Haight RC
    Med Phys; 1990; 17(1):1-9. PubMed ID: 2308539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of A-150 plastic-equivalent gas in A-150 plastic ionization chambers for p(66)Be(49) neutrons.
    Awschalom M; Rosenberg I; Ten Haken RK; Pearson DW; Attix FH; DeLuca PM
    Med Phys; 1982; 9(6):884-7. PubMed ID: 6298588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dosimetry of low-energy neutrons using low-pressure proportional counters.
    Schuhmacher H; Alberts WG; Menzel HG; Bühler G
    Radiat Res; 1987 Jul; 111(1):1-13. PubMed ID: 3602347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.
    Waker AJ; Aslam
    Radiat Res; 2011 Jun; 175(6):806-13. PubMed ID: 21476858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance characteristics of A 150 plastic-equivalent gases in A 150 plastic proportional counters for 14.8-MeV neutrons.
    DeLuca PM; Schell MC; Pearson DW; Higgins PD; Attix FH
    Med Phys; 1984; 11(4):449-55. PubMed ID: 6482840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.
    Aslam ; Matysiak W; Atanackovic J; Waker AJ
    Health Phys; 2012 Jun; 102(6):603-13. PubMed ID: 22570919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute neutron dosimetry: effects of ionization chamber wall thickness.
    Ten Haken RK; Awschalom M; Rosenberg I
    Med Phys; 1985; 12(1):46-52. PubMed ID: 3974524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cavity size on the response of cavity chambers to 25- and 45-MeV neutrons.
    Newhauser WD; Brede HJ
    Med Phys; 1997 Apr; 24(4):527-33. PubMed ID: 9127303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Component evaluation of event size spectra for a clinical 14-MeV neutron beam.
    Schmidt R; Hess A
    Med Phys; 1988; 15(3):343-7. PubMed ID: 3405136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of absorbed dose and kerma in a neutron field from measurements with a tissue-equivalent ionisation chamber.
    Mijnheer BJ; Williams JR
    Phys Med Biol; 1981 Jan; 26(1):57-69. PubMed ID: 7243871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of variation in the energy spectrum of a cyclotron-produced fast neutron beam in a phantom relevant to its application in radiotherapy.
    Bonnett DE; Parnell CJ
    Br J Radiol; 1982 Jan; 55(649):48-55. PubMed ID: 6797499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam.
    Endo S; Tanaka K; Takada M; Onizuka Y; Miyahara N; Sato T; Ishikawa M; Maeda N; Hayabuchi N; Shizuma K; Hoshi M
    Med Phys; 2007 Sep; 34(9):3571-8. PubMed ID: 17926960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of neutrons from water, polyethylene, tissue equivalent material and CR-39 irradiated with 2.5-30 MeV photons.
    Allen PD; Chaudhri MA
    Australas Phys Eng Sci Med; 1991 Sep; 14(3):153-6. PubMed ID: 1953501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.