These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36960756)

  • 21. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.
    Dittmann E; Gugger M; Sivonen K; Fewer DP
    Trends Microbiol; 2015 Oct; 23(10):642-652. PubMed ID: 26433696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
    Sardar D; Tianero MD; Schmidt EW
    Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of natural products containing β-amino acids.
    Kudo F; Miyanaga A; Eguchi T
    Nat Prod Rep; 2014 Aug; 31(8):1056-73. PubMed ID: 24926851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids.
    Beller HR; Lee TS; Katz L
    Nat Prod Rep; 2015 Sep; 32(10):1508-26. PubMed ID: 26216573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two novel cyanobacterial α-dioxygenases for the biosynthesis of fatty aldehydes.
    Kim IJ; Brack Y; Bayer T; Bornscheuer UT
    Appl Microbiol Biotechnol; 2022 Jan; 106(1):197-210. PubMed ID: 34882252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade.
    Mi Y; Zhang J; He S; Yan X
    Mar Drugs; 2017 May; 15(5):. PubMed ID: 28475149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products.
    Kaiser BK; Carleton M; Hickman JW; Miller C; Lawson D; Budde M; Warrener P; Paredes A; Mullapudi S; Navarro P; Cross F; Roberts JM
    PLoS One; 2013; 8(3):e58307. PubMed ID: 23505484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis.
    Whicher JR; Smaga SS; Hansen DA; Brown WC; Gerwick WH; Sherman DH; Smith JL
    Chem Biol; 2013 Nov; 20(11):1340-51. PubMed ID: 24183970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms.
    Jiang M; Chen S; Li J; Liu L
    Mar Drugs; 2020 Feb; 18(2):. PubMed ID: 32075282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do cyanobacterial lipids contain fatty acids longer than 18 carbon atoms?
    Iliev I; Petkov G; Lukavsky J; Furnadzhiev S; Andreeva R
    Z Naturforsch C J Biosci; 2011; 66(5-6):267-76. PubMed ID: 21812344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the biosynthesis of plasmalogens during myelination in the rat. VIII[1]. Incorporation of 1-[1-14C] alkyl-2-acyl-3-sn-glycerophosphoethanolamine with different fatty acids.
    Tjiong HB; Gunawan J; Debuch H
    Hoppe Seylers Z Physiol Chem; 1976 May; 357(5):707-12. PubMed ID: 964928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comprehensive review of chemistry and pharmacological aspects of natural cyanobacterial azoline-based circular and linear oligopeptides.
    Dahiya S; Dahiya R
    Eur J Med Chem; 2021 Jun; 218():113406. PubMed ID: 33823395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic solutions to the biosynthesis of some diaminomonocarboxylic acids in nature: Formation in cyanobacteria of the neurotoxins 3-N-methyl-2,3-diaminopropanoic acid (BMAA) and 2,4-diaminobutanoic acid (2,4-DAB).
    Nunn PB; Codd GA
    Phytochemistry; 2017 Dec; 144():253-270. PubMed ID: 29059579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyanochelins, an Overlooked Class of Widely Distributed Cyanobacterial Siderophores, Discovered by Silent Gene Cluster Awakening.
    Galica T; Borbone N; Mareš J; Kust A; Caso A; Esposito G; Saurav K; Hájek J; Řeháková K; Urajová P; Costantino V; Hrouzek P
    Appl Environ Microbiol; 2021 Aug; 87(17):e0312820. PubMed ID: 34132591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Total Synthesis of the Ambigols: A Cyanobacterial Class of Polyhalogenated Natural Products.
    Milzarek TM; Gulder TAM
    Org Lett; 2021 Jan; 23(1):102-106. PubMed ID: 33305960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis-assisted structural elucidation of the bartolosides, chlorinated aromatic glycolipids from cyanobacteria.
    Leão PN; Nakamura H; Costa M; Pereira AR; Martins R; Vasconcelos V; Gerwick WH; Balskus EP
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11063-7. PubMed ID: 26235728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity.
    Hohlman RM; Sherman DH
    Nat Prod Rep; 2021 Sep; 38(9):1567-1588. PubMed ID: 34032254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pathway for the biosynthesis of straight and branched, odd- and even-length, medium-chain fatty acids in plants.
    Kroumova AB; Xie Z; Wagner GJ
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11437-41. PubMed ID: 7972080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 3-N-methyl-2,3-diaminopropanoic acid (BMAA).
    Mantas MJQ; Nunn PB; Codd GA; Barker D
    Phytochemistry; 2022 Aug; 200():113198. PubMed ID: 35447107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.