These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3696085)

  • 1. Determination of electron beam mean incident energy from d50 (ionization) values.
    Ten Haken RK; Fraass BA
    Med Phys; 1987; 14(6):985-91. PubMed ID: 3696085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical methods of electron depth-dose measurement compared to use of the NACP design chamber in water.
    Ten Haken RK; Fraass BA; Jost RJ
    Med Phys; 1987; 14(6):1060-6. PubMed ID: 3696072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative electron beam measurements: scaling depths in clear polystyrene to equivalent depths in water.
    Ten Haken RK; Fraass BA
    Med Phys; 1987; 14(3):410-3. PubMed ID: 3600533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams.
    Ono T; Araki F; Yoshiyama F
    Med Phys; 2011 Aug; 38(8):4647-54. PubMed ID: 21928637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25.
    Gerbi BJ; Antolak JA; Deibel FC; Followill DS; Herman MG; Higgins PD; Huq MS; Mihailidis DN; Yorke ED; Hogstrom KR; Khan FM
    Med Phys; 2009 Jul; 36(7):3239-79. PubMed ID: 19673223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types.
    Muir BR; Rogers DW
    Med Phys; 2014 Nov; 41(11):111701. PubMed ID: 25370615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.
    Zink K; Wulff J
    Med Phys; 2011 Feb; 38(2):1045-54. PubMed ID: 21452742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams.
    Verhaegen F; Zakikhani R; Dusautoy A; Palmans H; Bostock G; Shipley D; Seuntjens J
    Phys Med Biol; 2006 Mar; 51(5):1221-35. PubMed ID: 16481689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Polarity effects of commercial plane-parallel ionization chamber in therapeutic electron dosimetry-Results with C-134A ionization chamber.].
    Fujisaki T; Hiraoka T; Saitoh H; Nakajima M; Kuramoto A
    Igaku Butsuri; 2005; 25(1):32-9. PubMed ID: 15961926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo study of si diode response in electron beams.
    Wang LL; Rogers DW
    Med Phys; 2007 May; 34(5):1734-42. PubMed ID: 17555255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measured overall perturbation factors at depths greater than dmax for ionization chambers in electron beams.
    Reft CS; Kuchnir FT
    Med Phys; 1999 Feb; 26(2):208-13. PubMed ID: 10076976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commissioning a p-type silicon diode for use in clinical electron beams.
    Eveling JN; Morgan AM; Pitchford WG
    Med Phys; 1999 Jan; 26(1):100-7. PubMed ID: 9949405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculated absorbed-dose ratios, TG51/TG21, for most widely used cylindrical and parallel-plate ion chambers over a range of photon and electron energies.
    Tailor RC; Hanson WF
    Med Phys; 2002 Jul; 29(7):1464-72. PubMed ID: 12148727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams.
    Hill R; Mo Z; Haque M; Baldock C
    Med Phys; 2009 Sep; 36(9):3971-81. PubMed ID: 19810470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron fluence correction factors for conversion of dose in plastic to dose in water.
    Ding GX; Rogers DW; Cygler JE; Mackie TR
    Med Phys; 1997 Feb; 24(2):161-76. PubMed ID: 9048356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of an extra-focal electron source to model collimator-scattered electrons using the pencil-beam redefinition algorithm.
    Boyd RA; Hogstrom KR; White RA; Antolak JA
    Med Phys; 2002 Nov; 29(11):2571-83. PubMed ID: 12462724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of electron beam dose parameters from EBT2 film data scored in a mini phantom.
    O'Reilly D; Smit CJ; du Plessis FC
    Australas Phys Eng Sci Med; 2013 Sep; 36(3):339-46. PubMed ID: 23794059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of chemical and ionization dosimetry for high-energy x-ray and electron beams.
    Durocher JJ; Boese H; Cormack DV; Holloway AF
    Med Phys; 1981; 8(2):197-202. PubMed ID: 6798385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.