BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36961381)

  • 1. Exposing Mechanisms for Defect Clearance in Supramolecular Self-Assembly: Palladium-Pyridine Coordination Revisited.
    Poole DA; Bobylev EO; de Bruin B; Mathew S; Reek JNH
    Inorg Chem; 2023 Apr; 62(14):5458-5467. PubMed ID: 36961381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy directs the self-assembly of supramolecular palladium coordination macrocycles and cages.
    Poole Iii DA; Bobylev EO; Mathew S; Reek JNH
    Chem Sci; 2022 Aug; 13(34):10141-10148. PubMed ID: 36128226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Size and Geometry of Heteroleptic Coordination Cages by Varying the Ligand Bent Angle.
    Li RJ; Fadaei-Tirani F; Scopelliti R; Severin K
    Chemistry; 2021 Jun; 27(36):9439-9445. PubMed ID: 33998736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homochiral supramolecular M2L4 cages by high-fidelity self-sorting of chiral ligands.
    Gütz C; Hovorka R; Schnakenburg G; Lützen A
    Chemistry; 2013 Aug; 19(33):10890-4. PubMed ID: 23824836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to Prepare Kinetically Stable Self-assembled Pt
    Bobylev EO; Poole DA; de Bruin B; Reek JNH
    Chemistry; 2021 Sep; 27(49):12667-12674. PubMed ID: 34155700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of nanoscopic coordination cages using a flexible tripodal amide containing linker.
    Mukherjee PS; Das N; Stang PJ
    J Org Chem; 2004 May; 69(10):3526-9. PubMed ID: 15132565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination driven self-assembly of four new molecular boats using a flexible imidazole-containing donor linker.
    Ghosh S; Chakrabarty R; Mukherjee PS
    Dalton Trans; 2008 Apr; (14):1850-6. PubMed ID: 18369491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyanionic Imido-P(V) Ligands: From Transition Metal Complexes to Coordination Driven Self-Assemblies.
    Sarkar M; Rajasekar P; Jose C; Boomishankar R
    Chem Rec; 2022 Mar; 22(3):e202100281. PubMed ID: 34962082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of metal-ligand self-assembly into spherical complex M6L8.
    Yoneya M; Yamaguchi T; Sato S; Fujita M
    J Am Chem Soc; 2012 Sep; 134(35):14401-7. PubMed ID: 22889247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation-Anion Arrangement Patterns in Self-Assembled Pd
    Clever GH; Punt P
    Acc Chem Res; 2017 Sep; 50(9):2233-2243. PubMed ID: 28817257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal and Organic Templates Together Control the Size of Covalent Macrocycles and Cages.
    Lavendomme R; Ronson TK; Nitschke JR
    J Am Chem Soc; 2019 Jul; 141(30):12147-12158. PubMed ID: 31287669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A triangular palladium(II) supramolecular coordination complex based on 1,4-bis(1H-imidazol-1-yl)benzene and (2,2'-bipyridyl)palladium(II) nitrate: synthesis and crystal structure.
    Daran JC; Gimeno N; Gouygou M; Volkman J
    Acta Crystallogr C Struct Chem; 2019 May; 75(Pt 5):523-528. PubMed ID: 31062708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of palladium(II) and platinum(II) metallo-rectangles with a guanosine-substituted terpyridine and study of their interactions with quadruplex DNA.
    Ghosh S; Mendoza O; Cubo L; Rosu F; Gabelica V; White AJ; Vilar R
    Chemistry; 2014 Apr; 20(16):4772-9. PubMed ID: 24596127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Analysis of Self-Assembly Process of a Pd
    Kai S; Martí-Centelles V; Sakuma Y; Mashiko T; Kojima T; Nagashima U; Tachikawa M; Lusby PJ; Hiraoka S
    Chemistry; 2018 Jan; 24(3):663-671. PubMed ID: 29044811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-selection in the self-assembly of isomeric supramolecular squares from unsymmetrical bis(4-pyridyl)acetylene ligands.
    Zhao L; Northrop BH; Zheng YR; Yang HB; Lee HJ; Lee YM; Park JY; Chi KW; Stang PJ
    J Org Chem; 2008 Sep; 73(17):6580-6. PubMed ID: 18683976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Component selection in the self-assembly of palladium(II) nanocages and cage-to-cage transformations.
    Samanta D; Mukherjee PS
    Chemistry; 2014 Sep; 20(39):12483-92. PubMed ID: 25111071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological prediction of palladium coordination cages.
    Poole DA; Bobylev EO; Mathew S; Reek JNH
    Chem Sci; 2020 Oct; 11(45):12350-12357. PubMed ID: 34094444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled supramolecular cages containing ruthenium(II) polypyridyl complexes.
    Yang J; Bhadbhade M; Donald WA; Iranmanesh H; Moore EG; Yan H; Beves JE
    Chem Commun (Camb); 2015 Mar; 51(21):4465-8. PubMed ID: 25679952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-bond and metal-ligand coordination bond hybrid supramolecular capsules: identification of hemicapsular intermediate and dual control of guest exchange dynamics.
    Nito Y; Adachi H; Toyoda N; Takaya H; Kobayashi K; Yamanaka M
    Chem Asian J; 2014 Apr; 9(4):1076-82. PubMed ID: 24501041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum(II)-Based Convex Trigonal-Prismatic Cages via Coordination-Driven Self-Assembly and C
    Zhang M; Xu H; Wang M; Saha ML; Zhou Z; Yan X; Wang H; Li X; Huang F; She N; Stang PJ
    Inorg Chem; 2017 Oct; 56(20):12498-12504. PubMed ID: 28945436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.