BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36961389)

  • 1. Sensitivity Analysis of Genome-Scale Metabolic Flux Prediction.
    Niu P; Soto MJ; Huang S; Yoon BJ; Dougherty ER; Alexander FJ; Blaby I; Qian X
    J Comput Biol; 2023 Jul; 30(7):751-765. PubMed ID: 36961389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for condition-dependent metabolite yield prediction using the TRIMER pipeline.
    Niu P; Soto MJ; Yoon BJ; Dougherty ER; Alexander FJ; Blaby I; Qian X
    STAR Protoc; 2022 Mar; 3(1):101184. PubMed ID: 35243375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRIMER: Transcription Regulation Integrated with Metabolic Regulation.
    Niu P; Soto MJ; Yoon BJ; Dougherty ER; Alexander FJ; Blaby I; Qian X
    iScience; 2021 Nov; 24(11):103218. PubMed ID: 34761179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale modeling for metabolic engineering.
    Simeonidis E; Price ND
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):327-38. PubMed ID: 25578304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications.
    Antoniewicz MR
    Metab Eng; 2021 Jan; 63():2-12. PubMed ID: 33157225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the metabolic dynamics at the genome-scale by optimized yield analysis.
    Luo H; Li P; Ji B; Nielsen J
    Metab Eng; 2023 Jan; 75():119-130. PubMed ID: 36503050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian metabolic flux analysis reveals intracellular flux couplings.
    Heinonen M; Osmala M; Mannerström H; Wallenius J; Kaski S; Rousu J; Lähdesmäki H
    Bioinformatics; 2019 Jul; 35(14):i548-i557. PubMed ID: 31510676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
    Kiparissides A; Hatzimanikatis V
    Metab Eng; 2017 Jan; 39():117-127. PubMed ID: 27845184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.
    Kim HU; Kim TY; Lee SY
    BMC Syst Biol; 2011; 5 Suppl 2(Suppl 2):S14. PubMed ID: 22784571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis.
    Chandrasekaran S; Price ND
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17845-50. PubMed ID: 20876091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of probabilistic regulatory networks into constraint-based models of metabolism with applications to Alzheimer's disease.
    Yu H; Blair RH
    BMC Bioinformatics; 2019 Jul; 20(1):386. PubMed ID: 31291905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To be certain about the uncertainty: Bayesian statistics for
    Theorell A; Leweke S; Wiechert W; Nöh K
    Biotechnol Bioeng; 2017 Nov; 114(11):2668-2684. PubMed ID: 28695999
    [No Abstract]   [Full Text] [Related]  

  • 14. A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks.
    Sauta E; Demartini A; Vitali F; Riva A; Bellazzi R
    BMC Bioinformatics; 2020 May; 21(1):219. PubMed ID: 32471360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pool size measurements improve precision of flux estimates but increase sensitivity to unmodeled reactions outside the core network in isotopically nonstationary metabolic flux analysis (INST-MFA).
    Zheng AO; Sher A; Fridman D; Musante CJ; Young JD
    Biotechnol J; 2022 Mar; 17(3):e2000427. PubMed ID: 35085426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust mutant strain design by pessimistic optimization.
    Apaydin M; Xu L; Zeng B; Qian X
    BMC Genomics; 2017 Oct; 18(Suppl 6):677. PubMed ID: 28984191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling regulatory networks using machine learning for systems metabolic engineering.
    Kwon MS; Lee BT; Lee SY; Kim HU
    Curr Opin Biotechnol; 2020 Oct; 65():163-170. PubMed ID: 32302888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data.
    Cesur MF; Çakır T; Pir P
    mSystems; 2022 Jun; 7(3):e0134721. PubMed ID: 35695574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using flux balance analysis to guide microbial metabolic engineering.
    Curran KA; Crook NC; Alper HS
    Methods Mol Biol; 2012; 834():197-216. PubMed ID: 22144361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.