These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 369615)

  • 21. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans.
    Pollack JH; Hashimoto T
    Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase from Escherichia coli.
    White RJ; Pasternak CA
    Methods Enzymol; 1975; 41():497-502. PubMed ID: 236479
    [No Abstract]   [Full Text] [Related]  

  • 23. Variations in the response to N-acetyl-D-glucosamine by isolates of Candida albicans.
    Wain WH; Brayton AR; Cawson RA
    Mycopathologia; 1976 Jun; 58(1):27-9. PubMed ID: 778622
    [No Abstract]   [Full Text] [Related]  

  • 24. FURTHER STUDIES ON THE REGULATION OF AMINO SUGAR METABOLISM IN BACILLUS SUBTILIS.
    BATES CJ; PASTERNAK CA
    Biochem J; 1965 Jul; 96(1):147-54. PubMed ID: 14343123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars.
    White RJ
    Biochem J; 1968 Feb; 106(4):847-58. PubMed ID: 4866432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of the nag regulon of Escherichia coli by N-acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator protein complex in expression of the regulon.
    Plumbridge JA
    J Bacteriol; 1990 May; 172(5):2728-35. PubMed ID: 2158978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans.
    Torosantucci A; Angiolella L; Filesi C; Cassone A
    J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Induction of hyphal transformation, uptake and incorporation of N-acetyl-D-glucosamine in Candida albicans].
    Mattia E; Carruba G; Angiolella L; Cassone A
    Ann Ist Super Sanita; 1982; 18(3):493-6. PubMed ID: 6765081
    [No Abstract]   [Full Text] [Related]  

  • 29. Glucosamine metabolism in Drosophilia virilis salivary glands: ontogenetic changes of enzyme activities and metabolite synthesis.
    Enghofer E; Kress H
    Dev Biol; 1980 Jul; 78(1):63-75. PubMed ID: 6249688
    [No Abstract]   [Full Text] [Related]  

  • 30. Isolation and characterization of the GFA1 gene encoding the glutamine:fructose-6-phosphate amidotransferase of Candida albicans.
    Smith RJ; Milewski S; Brown AJ; Gooday GW
    J Bacteriol; 1996 Apr; 178(8):2320-7. PubMed ID: 8636033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid intermediates involved in the transfer of N-acetylglucosamine to proteins in baker's yeast (Saccharomyces cerevisiae).
    Reuvers F; Habets-Willems C; Reinking A; Boer P
    Biochem Soc Trans; 1977; 5(2):440-2. PubMed ID: 332549
    [No Abstract]   [Full Text] [Related]  

  • 32. Enzymes of UDP-GlcNAc biosynthesis in yeast.
    Milewski S; Gabriel I; Olchowy J
    Yeast; 2006 Jan; 23(1):1-14. PubMed ID: 16408321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of N-acetylglucosaminidase production in Candida albicans.
    Niimi K; Niimi M; Shepherd MG; Cannon RD
    Arch Microbiol; 1997 Dec; 168(6):464-72. PubMed ID: 9385137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycolipid intermediates involved in the transfer of N-acetylglucosamine to endogenous proteins in a yeast membrane preparation.
    Reuvers F; Habets-Willems C; Reinking A; Boer P
    Biochim Biophys Acta; 1977 Mar; 486(3):541-52. PubMed ID: 322723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turnover of inducible N-acetylglucosamine catabolic enzymes in Candida albicans.
    Biswas M; Singh B; Rai YP; Datta A
    Indian J Exp Biol; 1982 Nov; 20(11):829-34. PubMed ID: 6762985
    [No Abstract]   [Full Text] [Related]  

  • 36. Glucosamine metabolism in Drosophila salivary glands. Separation of metabolites and some characteristics of three enzymes involved.
    Enghofer E; Kress H; Linzen B
    Biochim Biophys Acta; 1978 Dec; 544(2):245-51. PubMed ID: 718999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitinase activity from Candida albicans and its inhibition by allosamidin.
    Dickinson K; Keer V; Hitchcock CA; Adams DJ
    J Gen Microbiol; 1989 Jun; 135(6):1417-21. PubMed ID: 2693599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tritium labelling of amino sugars at C-2 by alkaline epimerization in tritiated water.
    Rodén L; Jin J; Yu H; Campbell P
    Glycobiology; 1995 Mar; 5(2):167-73. PubMed ID: 7780191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of antifungal action of kanosamine.
    Janiak AM; Milewski S
    Med Mycol; 2001 Oct; 39(5):401-8. PubMed ID: 12054050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Derepression of the high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae.
    Nieuwenhuis BJ; Borst-Pauwels GW
    Biochim Biophys Acta; 1984 Feb; 770(1):40-6. PubMed ID: 6365165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.