BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36961610)

  • 21. Selenium-oxidizing Agrobacterium sp. T3F4 decreases arsenic uptake by Brassica rapa L. under a native polluted soil.
    An L; Zhou C; Zhao L; Wei A; Wang Y; Cui H; Zheng S
    J Environ Sci (China); 2024 Apr; 138():506-515. PubMed ID: 38135416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea).
    Kumar V; Singh P; Jorquera MA; Sangwan P; Kumar P; Verma AK; Agrawal S
    World J Microbiol Biotechnol; 2013 Aug; 29(8):1361-9. PubMed ID: 23546828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selenium-oxidizing Agrobacterium sp. T3F4 steadily colonizes in soil promoting selenium uptake by pak choi (Brassica campestris).
    Zhu D; Niu Y; Fan K; Zhang F; Wang Y; Wang G; Zheng S
    Sci Total Environ; 2021 Oct; 791():148294. PubMed ID: 34126490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the accumulation and transformation of Ch-SeNPs by Raphanus sativus and Brassica juncea: Effect on essential elements uptake.
    Moreno-Martín G; Sanz-Landaluze J; León-González ME; Madrid Y
    Sci Total Environ; 2020 Jul; 725():138453. PubMed ID: 32298902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive evaluation of factors influencing selenium fertilization biofortification.
    Huang R; Bañuelos GS; Zhao J; Wang Z; Farooq MR; Yang Y; Song J; Zhang Z; Chen Y; Yin X; Shen L
    J Sci Food Agric; 2024 Aug; 104(10):6100-6107. PubMed ID: 38445779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The reduction of selenium(IV) by boreal Pseudomonas sp. strain T5-6-I - Effects on selenium(IV) uptake in Brassica oleracea.
    Lusa M; Help H; Honkanen AP; Knuutinen J; Parkkonen J; Kalasová D; Bomberg M
    Environ Res; 2019 Oct; 177():108642. PubMed ID: 31430668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing a sustainable phytomanagement strategy for excessive selenium in western United States and India.
    Bañuelos GS; Dhillon KS
    Int J Phytoremediation; 2011; 13 Suppl 1():208-28. PubMed ID: 22046761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment.
    Bañuelos G; Terry N; Leduc DL; Pilon-Smits EA; Mackey B
    Environ Sci Technol; 2005 Mar; 39(6):1771-7. PubMed ID: 15819237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review.
    Schiavon M; Pilon-Smits EA
    J Environ Qual; 2017 Jan; 46(1):10-19. PubMed ID: 28177413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea.
    Van Huysen T; Abdel-Ghany S; Hale KL; LeDuc D; Terry N; Pilon-Smits EA
    Planta; 2003 Nov; 218(1):71-8. PubMed ID: 14618405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fate of selenium in biofortification of wheat on calcareous soil: an isotopic study.
    Ahmad S; Bailey EH; Arshad M; Ahmed S; Watts MJ; Young SD
    Environ Geochem Health; 2021 Sep; 43(9):3643-3657. PubMed ID: 33634392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation.
    LeDuc DL; Tarun AS; Montes-Bayon M; Meija J; Malit MF; Wu CP; AbdelSamie M; Chiang CY; Tagmount A; deSouza M; Neuhierl B; Böck A; Caruso J; Terry N
    Plant Physiol; 2004 May; 135(1):377-83. PubMed ID: 14671009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Agronomic and Genetic Strategies to Enhance Selenium Accumulation in Crops and Their Influence on Quality.
    Zhou B; Cao H; Wu Q; Mao K; Yang X; Su J; Zhang H
    Foods; 2023 Dec; 12(24):. PubMed ID: 38137246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Agronomic biofortification of maize and beans in Kenya through selenium fertilization.
    Ngigi PB; Lachat C; Masinde PW; Du Laing G
    Environ Geochem Health; 2019 Dec; 41(6):2577-2591. PubMed ID: 31069598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants.
    Ximénez-Embún P; Alonso I; Madrid-Albarrán Y; Cámara C
    J Agric Food Chem; 2004 Feb; 52(4):832-8. PubMed ID: 14969538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selenium Biofortification of Crop Food by Beneficial Microorganisms.
    Ye Y; Qu J; Pu Y; Rao S; Xu F; Wu C
    J Fungi (Basel); 2020 May; 6(2):. PubMed ID: 32375266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brassica juncea and the Se-hyperaccumulator Stanleya pinnata exhibit a different pattern of chromium and selenium accumulation and distribution while activating distinct oxidative stress-response signatures.
    Dalla Vecchia F; Nardi S; Santoro V; Pilon-Smits E; Schiavon M
    Environ Pollut; 2023 Mar; 320():121048. PubMed ID: 36634861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selenium in plants: A nexus of growth, antioxidants, and phytohormones.
    Ikram S; Li Y; Lin C; Yi D; Heng W; Li Q; Tao L; Hongjun Y; Weijie J
    J Plant Physiol; 2024 May; 296():154237. PubMed ID: 38583194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata.
    Prins CN; Hantzis LJ; Quinn CF; Pilon-Smits EA
    J Exp Bot; 2011 Nov; 62(15):5633-40. PubMed ID: 21841173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selenium bioactive compounds produced by beneficial microbes.
    Crespo L; Sede Lucena B; Martínez FG; Mozzi F; Pescuma M
    Adv Appl Microbiol; 2024; 126():63-92. PubMed ID: 38637107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.