These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36961827)

  • 1. Atomistic simulation of protein evolution reveals sequence covariation and time-dependent fluctuations of site-specific substitution rates.
    Norn C; André I
    PLoS Comput Biol; 2023 Mar; 19(3):e1010262. PubMed ID: 36961827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population size dependence of fitness effect distribution and substitution rate probed by biophysical model of protein thermostability.
    Goldstein RA
    Genome Biol Evol; 2013; 5(9):1584-93. PubMed ID: 23884461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved prediction of site-rates from structure with averaging across homologs.
    Norn C; Oliveira F; André I
    Protein Sci; 2024 Jul; 33(7):e5086. PubMed ID: 38923241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational effects on stability are largely conserved during protein evolution.
    Ashenberg O; Gong LI; Bloom JD
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):21071-6. PubMed ID: 24324165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling evolution at the protein level using an adjustable amino acid fitness model.
    Dimmic MW; Mindell DP; Goldstein RA
    Pac Symp Biocomput; 2000; ():18-29. PubMed ID: 10902153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermodynamic model of protein structure evolution explains empirical amino acid substitution matrices.
    Norn C; André I; Theobald DL
    Protein Sci; 2021 Oct; 30(10):2057-2068. PubMed ID: 34218472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity.
    Razeto-Barry P; Díaz J; Vásquez RA
    Genetics; 2012 Jun; 191(2):523-34. PubMed ID: 22426879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational evolutionary design: the theory of in vitro protein evolution.
    Voigt CA; Kauffman S; Wang ZG
    Adv Protein Chem; 2000; 55():79-160. PubMed ID: 11050933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of Stability-Induced Epistasis for Substitution Rates.
    Youssef N; Susko E; Bielawski JP
    Mol Biol Evol; 2020 Nov; 37(11):3131-3148. PubMed ID: 32897316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the Evolutionary Constraints and Potential of Hepatitis C Virus NS5A Protein.
    Dai L; Du Y; Qi H; Huber CD; Chen D; Zhang TH; Wu NC; Wang E; Lloyd-Smith JO; Sun R
    mSystems; 2021 Apr; 6(2):. PubMed ID: 33850042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution and evolutionary consequences of marginal thermostability in proteins.
    Goldstein RA
    Proteins; 2011 May; 79(5):1396-407. PubMed ID: 21337623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence.
    Echave J; Wilke CO
    Annu Rev Biophys; 2017 May; 46():85-103. PubMed ID: 28301766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covariation Is a Poor Measure of Molecular Coevolution.
    Talavera D; Lovell SC; Whelan S
    Mol Biol Evol; 2015 Sep; 32(9):2456-68. PubMed ID: 25944916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein evolution along phylogenetic histories under structurally constrained substitution models.
    Arenas M; Dos Santos HG; Posada D; Bastolla U
    Bioinformatics; 2013 Dec; 29(23):3020-8. PubMed ID: 24037213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating protein evolution in sequence and structure space.
    Xia Y; Levitt M
    Curr Opin Struct Biol; 2004 Apr; 14(2):202-7. PubMed ID: 15093835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein folding and binding can emerge as evolutionary spandrels through structural coupling.
    Manhart M; Morozov AV
    Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1797-802. PubMed ID: 25624494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.