These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36962023)

  • 1. Estimating Quantum Hamiltonians via Joint Measurements of Noisy Noncommuting Observables.
    McNulty D; Maciejewski FB; Oszmaniec M
    Phys Rev Lett; 2023 Mar; 130(10):100801. PubMed ID: 36962023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Quantum State Measurement with Classical Shadows.
    Zhang T; Sun J; Fang XX; Zhang XM; Yuan X; Lu H
    Phys Rev Lett; 2021 Nov; 127(20):200501. PubMed ID: 34860036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shallow Shadows: Expectation Estimation Using Low-Depth Random Clifford Circuits.
    Bertoni C; Haferkamp J; Hinsche M; Ioannou M; Eisert J; Pashayan H
    Phys Rev Lett; 2024 Jul; 133(2):020602. PubMed ID: 39073928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrifty Shadow Estimation: Reusing Quantum Circuits and Bounding Tails.
    Helsen J; Walter M
    Phys Rev Lett; 2023 Dec; 131(24):240602. PubMed ID: 38181152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational Quantum Eigensolvers for Sparse Hamiltonians.
    Kirby WM; Love PJ
    Phys Rev Lett; 2021 Sep; 127(11):110503. PubMed ID: 34558958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Estimation of Pauli Observables by Derandomization.
    Huang HY; Kueng R; Preskill J
    Phys Rev Lett; 2021 Jul; 127(3):030503. PubMed ID: 34328776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error mitigation extends the computational reach of a noisy quantum processor.
    Kandala A; Temme K; Córcoles AD; Mezzacapo A; Chow JM; Gambetta JM
    Nature; 2019 Mar; 567(7749):491-495. PubMed ID: 30918370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Incompatible Observables by Exploiting Sequential Weak Values.
    Piacentini F; Avella A; Levi MP; Gramegna M; Brida G; Degiovanni IP; Cohen E; Lussana R; Villa F; Tosi A; Zappa F; Genovese M
    Phys Rev Lett; 2016 Oct; 117(17):170402. PubMed ID: 27824450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation Values.
    Huggins WJ; Wan K; McClean J; O'Brien TE; Wiebe N; Babbush R
    Phys Rev Lett; 2022 Dec; 129(24):240501. PubMed ID: 36563264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterministic improvements of quantum measurements with grouping of compatible operators, non-local transformations, and covariance estimates.
    Yen TC; Ganeshram A; Izmaylov AF
    npj Quantum Inf; 2023; 9(1):14. PubMed ID: 38665255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine-grained lower limit of entropic uncertainty in the presence of quantum memory.
    Pramanik T; Chowdhury P; Majumdar AS
    Phys Rev Lett; 2013 Jan; 110(2):020402. PubMed ID: 23383877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Characterization of Unsharp Qubit Observables and Sequential Measurement Incompatibility via Quantum Random Access Codes.
    Anwer H; Muhammad S; Cherifi W; Miklin N; Tavakoli A; Bourennane M
    Phys Rev Lett; 2020 Aug; 125(8):080403. PubMed ID: 32909802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Certified algorithms for equilibrium states of local quantum Hamiltonians.
    Fawzi H; Fawzi O; Scalet SO
    Nat Commun; 2024 Aug; 15(1):7394. PubMed ID: 39191784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning a Local Hamiltonian from Local Measurements.
    Bairey E; Arad I; Lindner NH
    Phys Rev Lett; 2019 Jan; 122(2):020504. PubMed ID: 30720316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and robust estimation of many-qubit Hamiltonians.
    Stilck França D; Markovich LA; Dobrovitski VV; Werner AH; Borregaard J
    Nat Commun; 2024 Jan; 15(1):311. PubMed ID: 38191453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint measurability in nonequilibrium quantum thermodynamics.
    Beyer K; Uola R; Luoma K; Strunz WT
    Phys Rev E; 2022 Aug; 106(2):L022101. PubMed ID: 36109912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incompatible observables in classical physics: A closer look at measurement in Hamiltonian mechanics.
    Theurel D
    Phys Rev E; 2024 Aug; 110(2-1):024124. PubMed ID: 39294991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operator Relaxation and the Optimal Depth of Classical Shadows.
    Ippoliti M; Li Y; Rakovszky T; Khemani V
    Phys Rev Lett; 2023 Jun; 130(23):230403. PubMed ID: 37354418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians.
    Te Vrugt M; Wittkowski R
    Phys Rev E; 2019 Jun; 99(6-1):062118. PubMed ID: 31330634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fewer Measurements from Shadow Tomography with N-Representability Conditions.
    Avdic I; Mazziotti DA
    Phys Rev Lett; 2024 May; 132(22):220802. PubMed ID: 38877920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.