These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36962033)
1. Cyclops States in Repulsive Kuramoto Networks: The Role of Higher-Order Coupling. Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh I Phys Rev Lett; 2023 Mar; 130(10):107201. PubMed ID: 36962033 [TBL] [Abstract][Full Text] [Related]
2. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling. Bolotov MI; Munyayev VO; Smirnov LA; Osipov GV; Belykh I Phys Rev E; 2024 May; 109(5-1):054202. PubMed ID: 38907462 [TBL] [Abstract][Full Text] [Related]
3. Stability of rotatory solitary states in Kuramoto networks with inertia. Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064 [TBL] [Abstract][Full Text] [Related]
4. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
5. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Bick C; Ashwin P; Rodrigues A Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441 [TBL] [Abstract][Full Text] [Related]
6. Generalized splay states in phase oscillator networks. Berner R; Yanchuk S; Maistrenko Y; Schöll E Chaos; 2021 Jul; 31(7):073128. PubMed ID: 34340340 [TBL] [Abstract][Full Text] [Related]
7. How synaptic function controls critical transitions in spiking neuron networks: insight from a Kuramoto model reduction. Smirnov LA; Munyayev VO; Bolotov MI; Osipov GV; Belykh I Front Netw Physiol; 2024; 4():1423023. PubMed ID: 39185374 [TBL] [Abstract][Full Text] [Related]
8. Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states. Picallo CB; Riecke H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036206. PubMed ID: 21517574 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter. Chen B; Engelbrecht JR; Mirollo R Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124 [TBL] [Abstract][Full Text] [Related]
10. Weak chimeras in minimal networks of coupled phase oscillators. Ashwin P; Burylko O Chaos; 2015 Jan; 25(1):013106. PubMed ID: 25637917 [TBL] [Abstract][Full Text] [Related]
11. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
12. Control of amplitude chimeras by time delay in oscillator networks. Gjurchinovski A; Schöll E; Zakharova A Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829 [TBL] [Abstract][Full Text] [Related]
13. Distinct collective states due to trade-off between attractive and repulsive couplings. Sathiyadevi K; Chandrasekar VK; Senthilkumar DV; Lakshmanan M Phys Rev E; 2018 Mar; 97(3-1):032207. PubMed ID: 29776099 [TBL] [Abstract][Full Text] [Related]
14. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia. Brister BN; Belykh VN; Belykh IV Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588 [TBL] [Abstract][Full Text] [Related]
15. Synchronization transitions in Kuramoto networks with higher-mode interaction. Berner R; Lu A; Sokolov IM Chaos; 2023 Jul; 33(7):. PubMed ID: 37463093 [TBL] [Abstract][Full Text] [Related]
16. Solitary states and solitary state chimera in neural networks. Rybalova E; Anishchenko VS; Strelkova GI; Zakharova A Chaos; 2019 Jul; 29(7):071106. PubMed ID: 31370403 [TBL] [Abstract][Full Text] [Related]
17. Chimera-like behavior in a heterogeneous Kuramoto model: The interplay between attractive and repulsive coupling. Frolov N; Maksimenko V; Majhi S; Rakshit S; Ghosh D; Hramov A Chaos; 2020 Aug; 30(8):081102. PubMed ID: 32872824 [TBL] [Abstract][Full Text] [Related]
18. Chimeras and solitary states in 3D oscillator networks with inertia. Maistrenko V; Sudakov O; Osiv O Chaos; 2020 Jun; 30(6):063113. PubMed ID: 32611131 [TBL] [Abstract][Full Text] [Related]
19. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators. Roberts DC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336 [TBL] [Abstract][Full Text] [Related]