These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36962050)

  • 1. Observation of Edge Magnetoplasmon Squeezing in a Quantum Hall Conductor.
    Bartolomei H; Bisognin R; Kamata H; Berroir JM; Bocquillon E; Ménard G; Plaçais B; Cavanna A; Gennser U; Jin Y; Degiovanni P; Mora C; Fève G
    Phys Rev Lett; 2023 Mar; 130(10):106201. PubMed ID: 36962050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of squeezing in the electron quantum shot noise of a tunnel junction.
    Gasse G; Lupien C; Reulet B
    Phys Rev Lett; 2013 Sep; 111(13):136601. PubMed ID: 24116798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode-multiplexing deep-strong light-matter coupling.
    Mornhinweg J; Diebel LK; Halbhuber M; Prager M; Riepl J; Inzenhofer T; Bougeard D; Huber R; Lange C
    Nat Commun; 2024 Feb; 15(1):1847. PubMed ID: 38418459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors.
    Zhao Y; Aritomi N; Capocasa E; Leonardi M; Eisenmann M; Guo Y; Polini E; Tomura A; Arai K; Aso Y; Huang YC; Lee RK; Lück H; Miyakawa O; Prat P; Shoda A; Tacca M; Takahashi R; Vahlbruch H; Vardaro M; Wu CM; Barsuglia M; Flaminio R
    Phys Rev Lett; 2020 May; 124(17):171101. PubMed ID: 32412296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant Plasmon-Assisted Tunneling in a Double Quantum Dot Coupled to a Quantum Hall Plasmon Resonator.
    Lin C; Futamata K; Akiho T; Muraki K; Fujisawa T
    Phys Rev Lett; 2024 Jul; 133(3):036301. PubMed ID: 39094171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Optics Theory of Electronic Noise in Coherent Conductors.
    Grimsmo AL; Qassemi F; Reulet B; Blais A
    Phys Rev Lett; 2016 Jan; 116(4):043602. PubMed ID: 26871330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ponderomotive Squeezing of Light by a Levitated Nanoparticle in Free Space.
    Militaru A; Rossi M; Tebbenjohanns F; Romero-Isart O; Frimmer M; Novotny L
    Phys Rev Lett; 2022 Jul; 129(5):053602. PubMed ID: 35960561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Few-cycle vacuum squeezing in nanophotonics.
    Nehra R; Sekine R; Ledezma L; Guo Q; Gray RM; Roy A; Marandi A
    Science; 2022 Sep; 377(6612):1333-1337. PubMed ID: 36108022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong microwave squeezing above 1 Tesla and 1 Kelvin.
    Vaartjes A; Kringhøj A; Vine W; Day T; Morello A; Pla JJ
    Nat Commun; 2024 May; 15(1):4229. PubMed ID: 38762499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Squeezing microwaves by magnetostriction.
    Li J; Wang YP; You JQ; Zhu SY
    Natl Sci Rev; 2023 May; 10(5):nwac247. PubMed ID: 37228254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of microwave parametric down-conversion and squeezing using circuit QED.
    Moon K; Girvin SM
    Phys Rev Lett; 2005 Sep; 95(14):140504. PubMed ID: 16241637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double quantum dots as detectors of high-frequency quantum noise in mesoscopic conductors.
    Aguado R; Kouwenhoven LP
    Phys Rev Lett; 2000 Feb; 84(9):1986-9. PubMed ID: 11017677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light.
    Dwyer S; Barsotti L; Chua SS; Evans M; Factourovich M; Gustafson D; Isogai T; Kawabe K; Khalaidovski A; Lam PK; Landry M; Mavalvala N; McClelland DE; Meadors GD; Mow-Lowry CM; Schnabel R; Schofield RM; Smith-Lefebvre N; Stefszky M; Vorvick C; Sigg D
    Opt Express; 2013 Aug; 21(16):19047-60. PubMed ID: 23938820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of squeezed light from one atom excited with two photons.
    Ourjoumtsev A; Kubanek A; Koch M; Sames C; Pinkse PW; Rempe G; Murr K
    Nature; 2011 Jun; 474(7353):623-6. PubMed ID: 21720367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase control of squeezed vacuum states of light in gravitational wave detectors.
    Dooley KL; Schreiber E; Vahlbruch H; Affeldt C; Leong JR; Wittel H; Grote H
    Opt Express; 2015 Apr; 23(7):8235-45. PubMed ID: 25968662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model.
    Joshi C; Irish EK; Spiller TP
    Sci Rep; 2017 Mar; 7():45587. PubMed ID: 28358025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of quantum states with nonlinear squeezing by Kerr nonlinearity.
    Bräuer Š; Marek P
    Opt Express; 2021 Jul; 29(14):22648-22658. PubMed ID: 34266023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of an interedge magnetoplasmon mode in a degenerate two-dimensional electron gas.
    Sukhodub G; Hohls F; Haug RJ
    Phys Rev Lett; 2004 Nov; 93(19):196801. PubMed ID: 15600861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical signature of ponderomotive squeezing in a suspended mirror resonator.
    Marino F; Cataliotti FS; Farsi A; de Cumis MS; Marin F
    Phys Rev Lett; 2010 Feb; 104(7):073601. PubMed ID: 20366880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alignment sensing and control for squeezed vacuum states of light.
    Schreiber E; Dooley KL; Vahlbruch H; Affeldt C; Bisht A; Leong JR; Lough J; Prijatelj M; Slutsky J; Was M; Wittel H; Danzmann K; Grote H
    Opt Express; 2016 Jan; 24(1):146-52. PubMed ID: 26832246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.