These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36963451)
61. Assessing the influence of environmental conditions on secondary organic aerosol formation from a typical biomass burning compound. Jiang X; Liu D; Xu L; Tsona NT; Du L J Environ Sci (China); 2022 Apr; 114():136-148. PubMed ID: 35459479 [TBL] [Abstract][Full Text] [Related]
62. Source apportionment of marine atmospheric aerosols in northern South China Sea during summertime 2018. Liang B; Cai M; Sun Q; Zhou S; Zhao J Environ Pollut; 2021 Nov; 289():117948. PubMed ID: 34426195 [TBL] [Abstract][Full Text] [Related]
63. Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds. Faust JA; Wong JP; Lee AK; Abbatt JP Environ Sci Technol; 2017 Feb; 51(3):1405-1413. PubMed ID: 28124902 [TBL] [Abstract][Full Text] [Related]
64. Differences in aerosol chemistry at a regional background site in Hong Kong before and during the COVID-19 pandemic. Huo Y; Yao D; Guo H Sci Total Environ; 2024 May; 926():171990. PubMed ID: 38537818 [TBL] [Abstract][Full Text] [Related]
65. Characteristics of volatile organic compounds in the metropolitan city of Seoul, South Korea: Diurnal variation, source identification, secondary formation of organic aerosol, and health risk. Kim SJ; Lee SJ; Lee HY; Son JM; Lim HB; Kim HW; Shin HJ; Lee JY; Choi SD Sci Total Environ; 2022 Sep; 838(Pt 3):156344. PubMed ID: 35654203 [TBL] [Abstract][Full Text] [Related]
66. Spatial Variation of Aerosol Chemical Composition and Organic Components Identified by Positive Matrix Factorization in the Barcelona Region. Mohr C; DeCarlo PF; Heringa MF; Chirico R; Richter R; Crippa M; Querol X; Baltensperger U; Prévôt AS Environ Sci Technol; 2015 Sep; 49(17):10421-30. PubMed ID: 26237368 [TBL] [Abstract][Full Text] [Related]
67. [Variation Characteristics and Potential Sources of the Mt. Haituo Aerosol Chemical Composition in Different Pollution Processes During Winter in Beijing, China]. Zhao DL; Wang F; Liu DT; Tian P; Sheng JJ; Zhow W; Xiao W; Du YM; Lu L; Huang MY; He H; Ding DP Huan Jing Ke Xue; 2022 Jan; 43(1):46-60. PubMed ID: 34989489 [TBL] [Abstract][Full Text] [Related]
68. Deposition of secondary organic aerosol in human lung model: Effect of photochemically aged aerosol on human respiratory system. Oh HJ; Chen Y; Kim H Ecotoxicol Environ Saf; 2023 Oct; 265():115497. PubMed ID: 37729697 [TBL] [Abstract][Full Text] [Related]
69. Characterization and source identification of submicron aerosol during serious haze pollution periods in Beijing. Xu P; Yang Y; Zhang J; Gao W; Liu Z; Hu B; Wang Y J Environ Sci (China); 2022 Feb; 112():25-37. PubMed ID: 34955209 [TBL] [Abstract][Full Text] [Related]
70. Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol. Kostenidou E; Lee BH; Engelhart GJ; Pierce JR; Pandis SN Environ Sci Technol; 2009 Jul; 43(13):4884-9. PubMed ID: 19673280 [TBL] [Abstract][Full Text] [Related]
71. Submicron Aerosol Composition and Source Contribution across the Kathmandu Valley, Nepal, in Winter. Werden BS; Giordano MR; Mahata K; Islam MR; Goetz JD; Puppala SP; Saikawa E; Panday AK; Yokelson RJ; Stone EA; DeCarlo PF ACS Earth Space Chem; 2023 Jan; 7(1):49-68. PubMed ID: 36704179 [TBL] [Abstract][Full Text] [Related]
72. Characterization and dark oxidation of the emissions of a pellet stove. Florou K; Kodros JK; Paglione M; Jorga S; Squizzato S; Masiol M; Uruci P; Nenes A; Pandis SN Environ Sci Atmos; 2023 Sep; 3(9):1319-1334. PubMed ID: 38013728 [TBL] [Abstract][Full Text] [Related]
73. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China. Wang D; Zhou B; Fu Q; Zhao Q; Zhang Q; Chen J; Yang X; Duan Y; Li J Sci Total Environ; 2016 Nov; 571():1454-66. PubMed ID: 27418517 [TBL] [Abstract][Full Text] [Related]
74. Precursors and Pathways Leading to Enhanced Secondary Organic Aerosol Formation during Severe Haze Episodes. Zheng Y; Chen Q; Cheng X; Mohr C; Cai J; Huang W; Shrivastava M; Ye P; Fu P; Shi X; Ge Y; Liao K; Miao R; Qiu X; Koenig TK; Chen S Environ Sci Technol; 2021 Dec; 55(23):15680-15693. PubMed ID: 34775752 [TBL] [Abstract][Full Text] [Related]
75. Seasonal variations in the sources of organic aerosol in Xi'an, Northwest China: The importance of biomass burning and secondary formation. Zhong H; Huang RJ; Duan J; Lin C; Gu Y; Wang Y; Li Y; Zheng Y; Chen Q; Chen Y; Dai W; Ni H; Chang Y; Worsnop DR; Xu W; Ovadnevaite J; Ceburnis D; O'Dowd CD Sci Total Environ; 2020 Oct; 737():139666. PubMed ID: 32526566 [TBL] [Abstract][Full Text] [Related]
76. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems. Seinfeld JH; Erdakos GB; Asher WE; Pankow JF Environ Sci Technol; 2001 May; 35(9):1806-17. PubMed ID: 11355196 [TBL] [Abstract][Full Text] [Related]
77. Realtime chemical characterization of post monsoon organic aerosols in a polluted urban city: Sources, composition, and comparison with other seasons. Chakraborty A; Mandariya AK; Chakraborti R; Gupta T; Tripathi SN Environ Pollut; 2018 Jan; 232():310-321. PubMed ID: 28974342 [TBL] [Abstract][Full Text] [Related]
78. [Diurnal Variation of SOA Formation Potential from Ambient Air at an Urban Site in Beijing]. Liu J; Chu BW; He H Huan Jing Ke Xue; 2018 Jun; 39(6):2505-2511. PubMed ID: 29965604 [TBL] [Abstract][Full Text] [Related]
79. Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer. Bahreini R; Keywood MD; Ng NL; Varutbangkul V; Gao S; Flagan RC; Seinfeld JH; Worsnop DR; Jimenez JL Environ Sci Technol; 2005 Aug; 39(15):5674-88. PubMed ID: 16124302 [TBL] [Abstract][Full Text] [Related]