These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 36963452)
1. pH drives the spatial variation of antibiotic resistance gene profiles in riparian soils at a watershed scale. Fu C; Qin Y; Xiang Q; Qiao M; Zhu Y Environ Pollut; 2023 Jun; 326():121486. PubMed ID: 36963452 [TBL] [Abstract][Full Text] [Related]
2. Anthropogenic activities significantly interfered distribution and co-occurrence patterns of antibiotic resistance genes in a small rural watershed in Southwest China. Liu Y; Zhang Q; Shi Y; Hao Z; Zhan X Ecotoxicol Environ Saf; 2024 Oct; 285():117118. PubMed ID: 39357373 [TBL] [Abstract][Full Text] [Related]
3. [Characteristics of Antibiotic Resistance Genes Distribution in Different Types of Agricultural Land Soils in Highly Cultivated Hilly Areas]. Chen R; Cheng JH; Tang XY Huan Jing Ke Xue; 2023 Dec; 44(12):6947-6954. PubMed ID: 38098417 [TBL] [Abstract][Full Text] [Related]
4. [Characteristics of Microorganisms and Antibiotic Resistance Genes of the Riparian Soil in the Lanzhou Section of the Yellow River]. Wei CC; Wei FY; Xia H; Huang K Huan Jing Ke Xue; 2024 May; 45(5):2686-2693. PubMed ID: 38629532 [TBL] [Abstract][Full Text] [Related]
5. Urbanization drives riverine bacterial antibiotic resistome more than taxonomic community at watershed scale. Peng F; Guo Y; Isabwe A; Chen H; Wang Y; Zhang Y; Zhu Z; Yang J Environ Int; 2020 Apr; 137():105524. PubMed ID: 32036121 [TBL] [Abstract][Full Text] [Related]
6. The distribution and key influential factors of antibiotic resistance genes in agricultural soils polluted by multiple heavy metals. Huang X; Zhao X; Fu L; Yang G; Luo L Environ Geochem Health; 2024 Aug; 46(10):385. PubMed ID: 39167301 [TBL] [Abstract][Full Text] [Related]
7. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. Xiang Q; Chen QL; Zhu D; An XL; Yang XR; Su JQ; Qiao M; Zhu YG Environ Pollut; 2018 Apr; 235():525-533. PubMed ID: 29324382 [TBL] [Abstract][Full Text] [Related]
8. Conversion of swine manure into biochar for soil amendment: Efficacy and underlying mechanism of dissipating antibiotic resistance genes. He Y; Zhao X; Zhu S; Yuan L; Li X; Feng Z; Yang X; Luo L; Xiao Y; Liu Y; Wang L; Deng O Sci Total Environ; 2023 May; 871():162046. PubMed ID: 36758702 [TBL] [Abstract][Full Text] [Related]
9. Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. Shen Y; Stedtfeld RD; Guo X; Bhalsod GD; Jeon S; Tiedje JM; Li H; Zhang W Environ Int; 2019 Oct; 131():105031. PubMed ID: 31336252 [TBL] [Abstract][Full Text] [Related]
10. Exploring the differences of antibiotic resistance genes profiles between river surface water and sediments using metagenomic approach. Jiang H; Zhou R; Zhang M; Cheng Z; Li J; Zhang G; Chen B; Zou S; Yang Y Ecotoxicol Environ Saf; 2018 Oct; 161():64-69. PubMed ID: 29859409 [TBL] [Abstract][Full Text] [Related]
11. Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. Li Y; Kong F; Li S; Wang J; Hu J; Chen S; Chen Q; Li Y; Ha X; Sun W J Hazard Mater; 2023 Aug; 456():131706. PubMed ID: 37247491 [TBL] [Abstract][Full Text] [Related]
12. Soil type shapes the antibiotic resistome profiles of long-term manured soil. Zhang Y; Cheng D; Zhang Y; Xie J; Xiong H; Wan Y; Zhang Y; Chen X; Shi X Sci Total Environ; 2021 Sep; 786():147361. PubMed ID: 33971610 [TBL] [Abstract][Full Text] [Related]
13. Earthworms reduce the dissemination potential of antibiotic resistance genes by changing bacterial co-occurrence patterns in soil. Li H; Luo QP; Pu Q; Yang XR; An XL; Zhu D; Su JQ J Hazard Mater; 2022 Mar; 426():128127. PubMed ID: 34953254 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Wang X; Lan B; Fei H; Wang S; Zhu G J Hazard Mater; 2021 Jun; 411():124848. PubMed ID: 33858075 [TBL] [Abstract][Full Text] [Related]
15. Environmental risks in swine biogas slurry-irrigated soils: A comprehensive analysis of antibiotic residues, resistome, and bacterial pathogens. Zeng JY; Meng M; Qi L; Li Y; Yao H Environ Int; 2024 Sep; 191():108954. PubMed ID: 39173236 [TBL] [Abstract][Full Text] [Related]
16. Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Chen Z; Zhang W; Yang L; Stedtfeld RD; Peng A; Gu C; Boyd SA; Li H Environ Pollut; 2019 May; 248():947-957. PubMed ID: 30861417 [TBL] [Abstract][Full Text] [Related]
17. Tracking antibiotic resistance genes in microplastic-contaminated soil. Wu C; Song X; Wang D; Ma Y; Ren X; Hu H; Shan Y; Ma X; Cui J; Ma Y Chemosphere; 2023 Jan; 312(Pt 1):137235. PubMed ID: 36375616 [TBL] [Abstract][Full Text] [Related]
18. Uncovering the prevalence and drivers of antibiotic resistance genes in soils across different land-use types. Wu J; Guo S; Lin H; Li K; Li Z; Wang J; Gaze WH; Zou J J Environ Manage; 2023 Oct; 344():118920. PubMed ID: 37660639 [TBL] [Abstract][Full Text] [Related]
19. Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil. Zhang H; Chen S; Zhang Q; Long Z; Yu Y; Fang H Environ Pollut; 2020 Apr; 259():113877. PubMed ID: 31926390 [TBL] [Abstract][Full Text] [Related]
20. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. Pu Q; Zhao LX; Li YT; Su JQ J Hazard Mater; 2020 Jun; 391():122267. PubMed ID: 32062545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]