BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36963461)

  • 1. Elucidating yeast glycolytic dynamics at steady state growth and glucose pulses through kinetic metabolic modeling.
    Lao-Martil D; Schmitz JPJ; Teusink B; van Riel NAW
    Metab Eng; 2023 May; 77():128-142. PubMed ID: 36963461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic adjustment upon repetitive substrate perturbations using dynamic
    Suarez-Mendez CA; Ras C; Wahl SA
    Microb Cell Fact; 2017 Sep; 16(1):161. PubMed ID: 28946905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Kinetic Modelling to Infer Adaptations in
    Lao-Martil D; Verhagen KJA; Valdeira Caetano AH; Pardijs IH; van Riel NAW; Wahl SA
    Metabolites; 2023 Jan; 13(1):. PubMed ID: 36677014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse.
    Kesten D; Kummer U; Sahle S; Hübner K
    Biophys Chem; 2015 Nov; 206():40-57. PubMed ID: 26176974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Modeling of
    Lao-Martil D; Verhagen KJA; Schmitz JPJ; Teusink B; Wahl SA; van Riel NAW
    Metabolites; 2022 Jan; 12(1):. PubMed ID: 35050196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH dependencies of glycolytic enzymes of yeast under in vivo-like assay conditions.
    Luzia L; Lao-Martil D; Savakis P; van Heerden J; van Riel N; Teusink B
    FEBS J; 2022 Oct; 289(19):6021-6037. PubMed ID: 35429225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae.
    Kumar K; Venkatraman V; Bruheim P
    Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae.
    Matsushika A; Nagashima A; Goshima T; Hoshino T
    PLoS One; 2013; 8(7):e69005. PubMed ID: 23874849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
    van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P
    Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae.
    Papini M; Nookaew I; Uhlén M; Nielsen J
    Microb Cell Fact; 2012 Oct; 11():136. PubMed ID: 23043429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glucose levels on carbon flow rate, antioxidant status, and enzyme activity of yeast during fermentation.
    Xie D; Sun Y; Lei Y
    J Sci Food Agric; 2022 Sep; 102(12):5333-5347. PubMed ID: 35318660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant Intracellular pH Regulation Limiting Glyceraldehyde-3-Phosphate Dehydrogenase Activity in the Glucose-Sensitive Yeast
    Van Leemputte F; Vanthienen W; Wijnants S; Van Zeebroeck G; Thevelein JM
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-Down, Knowledge-Based Genetic Reduction of Yeast Central Carbon Metabolism.
    Postma ED; Couwenberg LGF; van Roosmalen RN; Geelhoed J; de Groot PA; Daran-Lapujade P
    mBio; 2022 Oct; 13(5):e0297021. PubMed ID: 36129294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From steady-state to synchronized yeast glycolytic oscillations II: model validation.
    du Preez FB; van Niekerk DD; Snoep JL
    FEBS J; 2012 Aug; 279(16):2823-36. PubMed ID: 22686585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts.
    Scott WT; Smid EJ; Block DE; Notebaart RA
    Microb Cell Fact; 2021 Oct; 20(1):204. PubMed ID: 34674718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection for rapid uptake of scarce or fluctuating resource explains vulnerability of glycolysis to imbalance.
    Janulevicius A; van Doorn GS
    PLoS Comput Biol; 2021 Jan; 17(1):e1008547. PubMed ID: 33465070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the
    Henriques D; Minebois R; Mendoza SN; Macías LG; Pérez-Torrado R; Barrio E; Teusink B; Querol A; Balsa-Canto E
    mSystems; 2021 Aug; 6(4):e0026021. PubMed ID: 34342535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.