These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 36963685)
1. Global assessment of the sensitivity of water storage to hydroclimatic variations. Thomas BF; Nanteza J Sci Total Environ; 2023 Jun; 879():162958. PubMed ID: 36963685 [TBL] [Abstract][Full Text] [Related]
2. Divergent spatiotemporal variability of terrestrial water storage and eight hydroclimatic components over three different scales of the Yangtze River basin. Chao N; Li F; Yu N; Chen G; Wang Z; Ouyang G; Yeh PJ Sci Total Environ; 2023 Jun; 879():162886. PubMed ID: 36933709 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional Budyko framework incorporating terrestrial water storage: Unraveling water-energy dynamics, vegetation, and ocean-atmosphere interactions. He Q; Fok HS; Ferreira V; Tenzer R; Ma Z; Zhou H Sci Total Environ; 2023 Dec; 904():166380. PubMed ID: 37595904 [TBL] [Abstract][Full Text] [Related]
4. Characteristic mega-basin water storage behavior using GRACE. Reager JT; Famiglietti JS Water Resour Res; 2013 Jun; 49(6):3314-3329. PubMed ID: 24563556 [TBL] [Abstract][Full Text] [Related]
5. Future Hydroclimatic Impacts on Africa: Beyond the Paris Agreement. Piemontese L; Fetzer I; Rockström J; Jaramillo F Earths Future; 2019 Jul; 7(7):748-761. PubMed ID: 33043068 [TBL] [Abstract][Full Text] [Related]
6. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Scanlon BR; Zhang Z; Save H; Sun AY; Müller Schmied H; van Beek LPH; Wiese DN; Wada Y; Long D; Reedy RC; Longuevergne L; Döll P; Bierkens MFP Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1080-E1089. PubMed ID: 29358394 [TBL] [Abstract][Full Text] [Related]
7. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations. Khorrami B; Gündüz O Environ Monit Assess; 2023 Jun; 195(7):868. PubMed ID: 37347293 [TBL] [Abstract][Full Text] [Related]
8. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Chen H; Zhang W; Nie N; Guo Y Sci Total Environ; 2019 Feb; 649():372-387. PubMed ID: 30176450 [TBL] [Abstract][Full Text] [Related]
9. Influence of internal variability on population exposure to hydroclimatic changes. Mankin JS; Viviroli D; Mekonnen MM; Hoekstra AY; Horton RM; Smerdon JE; Diffenbaugh NS Environ Res Lett; 2017 Apr; 12(4):044007. PubMed ID: 32849911 [TBL] [Abstract][Full Text] [Related]
10. Assessment of ecosystem resilience to hydroclimatic disturbances in India. Sharma A; Goyal MK Glob Chang Biol; 2018 Feb; 24(2):e432-e441. PubMed ID: 28905461 [TBL] [Abstract][Full Text] [Related]
11. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Jing W; Zhang P; Zhao X Sci Rep; 2019 Feb; 9(1):1765. PubMed ID: 30741984 [TBL] [Abstract][Full Text] [Related]
12. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins. Satish Kumar K; AnandRaj P; Sreelatha K; Sridhar V Sci Total Environ; 2023 Jan; 857(Pt 2):159289. PubMed ID: 36209880 [TBL] [Abstract][Full Text] [Related]
13. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India. Satish Kumar K; Venkata Rathnam E; Sridhar V Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527 [TBL] [Abstract][Full Text] [Related]
14. Groundwater Storage Change in the Jinsha River Basin from GRACE, Hydrologic Models, and In Situ Data. Chao N; Chen G; Li J; Xiang L; Wang Z; Tian K Ground Water; 2020 Sep; 58(5):735-748. PubMed ID: 31773723 [TBL] [Abstract][Full Text] [Related]
15. Tibetan lake change linked to large-scale atmospheric oscillations via hydroclimatic trajectory. Wang R; Liu Y; Zhu L; Bafitlhile TM; Wang R; Liu Y Sci Total Environ; 2024 Nov; 951():175465. PubMed ID: 39151638 [TBL] [Abstract][Full Text] [Related]
16. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data. Jiao JJ; Zhang X; Liu Y; Kuang X PLoS One; 2015; 10(10):e0141442. PubMed ID: 26506230 [TBL] [Abstract][Full Text] [Related]
17. Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992-2016. Khaki M; Awange J; Forootan E; Kuhn M Sci Total Environ; 2018 Dec; 645():1509-1521. PubMed ID: 30248872 [TBL] [Abstract][Full Text] [Related]
18. Using GRACE to quantify the depletion of terrestrial water storage in Northeastern Brazil: The Urucuia Aquifer System. Gonçalves RD; Stollberg R; Weiss H; Chang HK Sci Total Environ; 2020 Feb; 705():135845. PubMed ID: 31972920 [TBL] [Abstract][Full Text] [Related]
19. Hydroclimatic changes and drivers in the Sava River Catchment and comparison with Swedish catchments. Levi L; Jaramillo F; Andričević R; Destouni G Ambio; 2015 Nov; 44(7):624-34. PubMed ID: 25753574 [TBL] [Abstract][Full Text] [Related]
20. Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin. Lin M; Biswas A; Bennett EM J Environ Manage; 2019 Apr; 235():84-95. PubMed ID: 30677659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]