BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 36964659)

  • 21. Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes.
    Han JL; Entcheva E
    Stem Cell Rev Rep; 2023 May; 19(4):886-905. PubMed ID: 36656467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of CRISPR-Cas systems in neuroscience.
    Bonnerjee D; Bagh S
    Prog Mol Biol Transl Sci; 2021; 178():231-264. PubMed ID: 33685599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR based therapeutics: a new paradigm in cancer precision medicine.
    Das S; Bano S; Kapse P; Kundu GC
    Mol Cancer; 2022 Mar; 21(1):85. PubMed ID: 35337340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR technologies for stem cell engineering and regenerative medicine.
    Hsu MN; Chang YH; Truong VA; Lai PL; Nguyen TKN; Hu YC
    Biotechnol Adv; 2019 Dec; 37(8):107447. PubMed ID: 31513841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perspectives on gene expression regulation techniques in Drosophila.
    Xu RG; Wang X; Shen D; Sun J; Qiao HH; Wang F; Liu LP; Ni JQ
    J Genet Genomics; 2019 Apr; 46(4):213-220. PubMed ID: 31060819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-Cas tools to study gene function in cytokinesis.
    Husser MC; Skaik N; Martin VJJ; Piekny A
    J Cell Sci; 2021 Apr; 134(8):. PubMed ID: 33912919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation and validation of CRISPR-engineered human natural killer cell lines for research and therapeutic applications.
    Kumar A; Lee SJ; Liu Q; Chan AKN; Pokharel SP; Yu J; Chen CW; Swaminathan S
    STAR Protoc; 2021 Dec; 2(4):100874. PubMed ID: 34746857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria.
    Call SN; Andrews LB
    Front Genome Ed; 2022; 4():892304. PubMed ID: 35813973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    Biotechnol Bioeng; 2020 Jun; 117(6):1817-1825. PubMed ID: 32129468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation.
    Dominguez AA; Lim WA; Qi LS
    Nat Rev Mol Cell Biol; 2016 Jan; 17(1):5-15. PubMed ID: 26670017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and implementation of a Type I-C CRISPR-based programmable repression system for
    Geslewitz WE; Cardenas A; Zhou X; Zhang Y; Criss AK; Seifert HS
    mBio; 2024 Feb; 15(2):e0302523. PubMed ID: 38126782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The CRISPR toolbox for the gram-positive model bacterium
    Zocca VFB; Corrêa GG; Lins MRDCR; de Jesus VN; Tavares LF; Amorim LADS; Kundlatsch GE; Pedrolli DB
    Crit Rev Biotechnol; 2022 Sep; 42(6):813-826. PubMed ID: 34719304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering.
    Yuan G; Hassan MM; Yao T; Lu H; Vergara MM; Labbé JL; Muchero W; Pan C; Chen JG; Tuskan GA; Qi Y; Abraham PE; Yang X
    ACS Synth Biol; 2021 Dec; 10(12):3600-3603. PubMed ID: 34878784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in CRISPR technologies for genome editing.
    Song M; Koo T
    Arch Pharm Res; 2021 Jun; 44(6):537-552. PubMed ID: 34164771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of CRISPR/Cas Systems for Precise Genome Editing.
    Hryhorowicz M; Lipiński D; Zeyland J
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research Techniques Made Simple: The Application of CRISPR-Cas9 and Genome Editing in Investigative Dermatology.
    Guitart JR; Johnson JL; Chien WW
    J Invest Dermatol; 2016 Sep; 136(9):e87-e93. PubMed ID: 27542298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanding the Scope of Bacterial CRISPR Activation with PAM-Flexible dCas9 Variants.
    Kiattisewee C; Karanjia AV; Legut M; Daniloski Z; Koplik SE; Nelson J; Kleinstiver BP; Sanjana NE; Carothers JM; Zalatan JG
    ACS Synth Biol; 2022 Dec; 11(12):4103-4112. PubMed ID: 36378874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.