These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36964900)

  • 21. 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid.
    Varsani S; Grover S; Zhou S; Koch KG; Huang PC; Kolomiets MV; Williams WP; Heng-Moss T; Sarath G; Luthe DS; Jander G; Louis J
    Plant Physiol; 2019 Apr; 179(4):1402-1415. PubMed ID: 30643012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the effects of
    Lanzoni A; Bosi S; Bregola V; Camastra F; Ciaramella A; Staiano A; Dinelli G; Burgio G
    Bull Entomol Res; 2022 Feb; 112(1):29-43. PubMed ID: 34218832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of novel QTLs for foxglove aphid resistance in soybean.
    Lee JS; Yoo MH; Jung JK; Bilyeu KD; Lee JD; Kang S
    Theor Appl Genet; 2015 Aug; 128(8):1481-8. PubMed ID: 25904004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids.
    Sytykiewicz H
    Biochem Biophys Res Commun; 2016 Jul; 476(2):90-5. PubMed ID: 27178208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population.
    Ding J; Zhang L; Chen J; Li X; Li Y; Cheng H; Huang R; Zhou B; Li Z; Wang J; Wu J
    PLoS One; 2015; 10(10):e0141619. PubMed ID: 26509792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf.
    Zhao X; Luo L; Cao Y; Liu Y; Li Y; Wu W; Lan Y; Jiang Y; Gao S; Zhang Z; Shen Y; Pan G; Lin H
    BMC Genomics; 2018 Jan; 19(1):91. PubMed ID: 29370753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomics and Alternative Splicing Analyses Reveal Large Differences between Maize Lines B73 and Mo17 in Response to Aphid
    Song J; Liu H; Zhuang H; Zhao C; Xu Y; Wu S; Qi J; Li J; Hettenhausen C; Wu J
    Front Plant Sci; 2017; 8():1738. PubMed ID: 29067035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32.
    Zhang S; Zhang Z; Bales C; Gu C; DiFonzo C; Li M; Song Q; Cregan P; Yang Z; Wang D
    Theor Appl Genet; 2017 Sep; 130(9):1941-1952. PubMed ID: 28710504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize.
    Zhang N; Huang X
    PLoS One; 2021; 16(1):e0245129. PubMed ID: 33406127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-density mapping for gray leaf spot resistance using two related tropical maize recombinant inbred line populations.
    Chen L; Liu L; Li Z; Zhang Y; Kang MS; Wang Y; Fan X
    Mol Biol Rep; 2021 Apr; 48(4):3379-3392. PubMed ID: 33890197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population.
    Wen W; Li K; Alseekh S; Omranian N; Zhao L; Zhou Y; Xiao Y; Jin M; Yang N; Liu H; Florian A; Li W; Pan Q; Nikoloski Z; Yan J; Fernie AR
    Plant Cell; 2015 Jul; 27(7):1839-56. PubMed ID: 26187921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Host plant adaptability and proteomic differences of diverse Rhopalosiphum maidis (Fitch) lineages.
    Guo J; Hao G; Hatt S; Wang Z; Francis F
    Arch Insect Biochem Physiol; 2022 Jan; 109(1):e21853. PubMed ID: 34820894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deciphering the genetic diversity and population structure of wild barley germplasm against corn leaf aphid, Rhopalosiphum maidis (Fitch).
    Maanju S; Jasrotia P; Yadav SS; Kashyap PL; Kumar S; Jat MK; Lal C; Sharma P; Singh G; Singh GP
    Sci Rep; 2023 Oct; 13(1):17313. PubMed ID: 37828115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aphid resistance in Capsicum maps to a locus containing LRR-RLK gene analogues.
    Sun M; Voorrips RE; Van't Westende W; van Kaauwen M; Visser RGF; Vosman B
    Theor Appl Genet; 2020 Jan; 133(1):227-237. PubMed ID: 31595336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic basis of resistance to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) leaf-feeding damage in maize.
    Brooks TD; Bushman BS; Williams WP; McMullen MD; Buckley PM
    J Econ Entomol; 2007 Aug; 100(4):1470-5. PubMed ID: 17849904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maize defense elicitor, 12-oxo-phytodienoic acid, prolongs aphid salivation.
    Grover S; Varsani S; Kolomiets MV; Louis J
    Commun Integr Biol; 2020; 13(1):63-66. PubMed ID: 32489516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Recently Discovered Maize Polerovirus Causes Leaf Reddening Symptoms in Several Maize Genotypes and is Transmitted by Both the Corn Leaf Aphid (
    Stewart LR; Todd J; Willie K; Massawe D; Khatri N
    Plant Dis; 2020 Jun; 104(6):1589-1592. PubMed ID: 32320337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [SSR linkage map construction and QTL mapping for leaf area in maize].
    Liu JC; Chu Q; Cai HG; Mi GH; Chen FJ
    Yi Chuan; 2010 Jun; 32(6):625-31. PubMed ID: 20566467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery and Fine Mapping of
    Lu L; Xu Z; Sun S; Du Q; Zhu Z; Weng J; Duan C
    Plant Dis; 2020 Jul; 104(7):1918-1924. PubMed ID: 32396052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize (
    Sytykiewicz H; Łukasik I; Goławska S; Chrzanowski G
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.