These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36965006)
1. Quantification approaches for magnetic resonance imaging following intravenous gadolinium injection: A window into brain-wide glymphatic function. Richmond SB; Rane S; Hanson MR; Albayram M; Iliff JJ; Kernagis D; Rosenberg JT; Seidler RD Eur J Neurosci; 2023 May; 57(10):1689-1704. PubMed ID: 36965006 [TBL] [Abstract][Full Text] [Related]
2. Impact of the Glymphatic System on the Kinetic and Distribution of Gadodiamide in the Rat Brain: Observations by Dynamic MRI and Effect of Circadian Rhythm on Tissue Gadolinium Concentrations. Taoka T; Jost G; Frenzel T; Naganawa S; Pietsch H Invest Radiol; 2018 Sep; 53(9):529-534. PubMed ID: 29652699 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive investigations of human glymphatic dynamics in a diseased model. Wu CH; Kuo Y; Chang FC; Lirng JF; Ling YH; Wang YF; Wu HM; Fuh JL; Lin CJ; Wang SJ; Chen SP Eur Radiol; 2023 Dec; 33(12):9087-9098. PubMed ID: 37402004 [TBL] [Abstract][Full Text] [Related]
5. Glymphatic Pathway of Gadolinium-Based Contrast Agents Through the Brain: Overlooked and Misinterpreted. Deike-Hofmann K; Reuter J; Haase R; Paech D; Gnirs R; Bickelhaupt S; Forsting M; Heußel CP; Schlemmer HP; Radbruch A Invest Radiol; 2019 Apr; 54(4):229-237. PubMed ID: 30480554 [TBL] [Abstract][Full Text] [Related]
6. MRI characterization of early CNS transport kinetics post intrathecal gadolinium injection: Trends of subarachnoid and parenchymal distribution in healthy volunteers. Dyke JP; Xu HS; Verma A; Voss HU; Chazen JL Clin Imaging; 2020 Dec; 68():1-6. PubMed ID: 32544736 [TBL] [Abstract][Full Text] [Related]
7. Semiquantitative 3T Brain Magnetic Resonance Imaging for Dynamic Visualization of the Glymphatic-Lymphatic Fluid Transport System in Humans: A Pilot Study. Filippopulos FM; Fischer TD; Seelos K; Dunker K; Belanovic B; Crispin A; Stahl R; Liebig T; Straube A; Forbrig R Invest Radiol; 2022 Aug; 57(8):544-551. PubMed ID: 35763443 [TBL] [Abstract][Full Text] [Related]
8. Human brain clearance imaging: Pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood. van Osch MJP; Wåhlin A; Scheyhing P; Mossige I; Hirschler L; Eklund A; Mogensen K; Gomolka R; Radbruch A; Qvarlander S; Decker A; Nedergaard M; Mori Y; Eide PK; Deike K; Ringstad G NMR Biomed; 2024 Sep; 37(9):e5159. PubMed ID: 38634301 [TBL] [Abstract][Full Text] [Related]
9. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain. Taoka T; Naganawa S Magn Reson Med Sci; 2018 Apr; 17(2):111-119. PubMed ID: 29367513 [TBL] [Abstract][Full Text] [Related]
10. The perivascular space is a conduit for cerebrospinal fluid flow in humans: A proof-of-principle report. Yamamoto EA; Bagley JH; Geltzeiler M; Sanusi OR; Dogan A; Liu JJ; Piantino J Proc Natl Acad Sci U S A; 2024 Oct; 121(42):e2407246121. PubMed ID: 39374384 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of glymphatic-meningeal lymphatic system with intravenous gadolinium-based contrast-enhancement in cerebral small-vessel disease. Zhang M; Tang J; Xia D; Xue Y; Ren X; Huang Q; Shi L; Tang W; Fu J Eur Radiol; 2023 Sep; 33(9):6096-6106. PubMed ID: 37410111 [TBL] [Abstract][Full Text] [Related]
12. Signal Intensity of the Cerebrospinal Fluid after Intravenous Administration of Gadolinium-based Contrast Agents: Strong Contrast Enhancement around the Vein of Labbe. Ohashi T; Naganawa S; Ogawa E; Katagiri T; Kuno K Magn Reson Med Sci; 2019 Jul; 18(3):194-199. PubMed ID: 30416181 [TBL] [Abstract][Full Text] [Related]
13. Intracranial Distribution of Intravenously Administered Gadolinium-based Contrast Agent over a Period of 24 Hours: Evaluation with 3D-real IR Imaging and MR Fingerprinting. Naganawa S; Ito R; Kato Y; Kawai H; Taoka T; Yoshida T; Maruyama K; Murata K; Körzdörfer G; Pfeuffer J; Nittka M; Sone M Magn Reson Med Sci; 2021 Mar; 20(1):91-98. PubMed ID: 32295977 [TBL] [Abstract][Full Text] [Related]
14. The Glymphatic System in Humans: Investigations With Magnetic Resonance Imaging. Naganawa S; Taoka T; Ito R; Kawamura M Invest Radiol; 2024 Jan; 59(1):1-12. PubMed ID: 36897826 [TBL] [Abstract][Full Text] [Related]
15. Glymphatic MRI techniques in sleep and neurodegenerative diseases. Lee H; Choi SH; Anzai Y Curr Opin Pulm Med; 2022 Nov; 28(6):499-510. PubMed ID: 36111851 [TBL] [Abstract][Full Text] [Related]
16. Contrast-enhanced magnetic resonance imaging evidence for the role of astrocytic aquaporin-4 water channels in glymphatic influx and interstitial solute transport. Takano K; Yamada M Magn Reson Imaging; 2020 Sep; 71():11-16. PubMed ID: 32446035 [TBL] [Abstract][Full Text] [Related]
18. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. Iliff JJ; Lee H; Yu M; Feng T; Logan J; Nedergaard M; Benveniste H J Clin Invest; 2013 Mar; 123(3):1299-309. PubMed ID: 23434588 [TBL] [Abstract][Full Text] [Related]
19. Distribution of Gadolinium-based Contrast Agent after Leaking into the Cerebrospinal Fluid: Comparison between the Cerebral Cisterns and the Lateral Ventricles. Ohashi T; Naganawa S; Iwata S; Kuno K Magn Reson Med Sci; 2021 Jun; 20(2):175-181. PubMed ID: 32641590 [TBL] [Abstract][Full Text] [Related]
20. Hepatic abscesses. Magnetic resonance imaging findings using gadolinium-BOPTA. Runge VM; Wells JW; Williams NM Invest Radiol; 1996 Dec; 31(12):781-8. PubMed ID: 8970881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]