These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36965535)
1. Detoxification mechanisms of biochar on plants in chromium contaminated soil: Chromium chemical forms and subcellular distribution. Sun P; Chen Y; Li X; Liu L; Guo J; Zheng X; Liu X Chemosphere; 2023 Jun; 327():138505. PubMed ID: 36965535 [TBL] [Abstract][Full Text] [Related]
2. Effect of biochar on the uptake, translocation and phytotoxicity of chromium in a soil-barley pot system. Dai L; Chen Y; Liu L; Sun P; Liu J; Wang B; Yang S Sci Total Environ; 2022 Jun; 826():153905. PubMed ID: 35189220 [TBL] [Abstract][Full Text] [Related]
3. Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils. Guo X; Ji Q; Rizwan M; Li H; Li D; Chen G Ecotoxicol Environ Saf; 2020 Dec; 206():111184. PubMed ID: 32861009 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic evaluation of biochar potential for plant growth promotion and alleviation of chromium-induced phytotoxicity in Ficus elastica. Kumar A; Joseph S; Tsechansky L; Schreiter IJ; Schüth C; Taherysoosavi S; Mitchell DRG; Graber ER Chemosphere; 2020 Mar; 243():125332. PubMed ID: 31751928 [TBL] [Abstract][Full Text] [Related]
5. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Shahid M; Shamshad S; Rafiq M; Khalid S; Bibi I; Niazi NK; Dumat C; Rashid MI Chemosphere; 2017 Jul; 178():513-533. PubMed ID: 28347915 [TBL] [Abstract][Full Text] [Related]
6. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269 [TBL] [Abstract][Full Text] [Related]
7. Impact of coconut-fiber biochar on lead translocation, accumulation, and detoxification mechanisms in a soil-rice system under elevated lead stress. Zhang J; Li J; Lin Q; Huang Y; Chen D; Ma H; Zhao Q; Luo W; Nawaz M; Jeyakumar P; Trakal L; Wang H J Hazard Mater; 2024 May; 469():133903. PubMed ID: 38430601 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of chromate reduction in soils by surface modified biochar. Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360 [TBL] [Abstract][Full Text] [Related]
10. Effect of ethylenediaminetetraacetic acid and biochar on Cu accumulation and subcellular partitioning in Amaranthus retroflexus L. Liu N; Dai J; Tian H; He H; Zhu Y Environ Sci Pollut Res Int; 2019 Apr; 26(10):10343-10353. PubMed ID: 30761486 [TBL] [Abstract][Full Text] [Related]
11. Immobilization and mitigation of chromium toxicity in aqueous solutions and tannery waste-contaminated soil using biochar and polymer-modified biochar. Rafique MI; Usman ARA; Ahmad M; Al-Wabel MI Chemosphere; 2021 Mar; 266():129198. PubMed ID: 33310527 [TBL] [Abstract][Full Text] [Related]
12. Quantitative evaluation of the synergistic effect of biochar and plants on immobilization of Pb. Sun P; Chen Y; Liu J; Lu S; Guo J; Zhang Z; Zheng X J Environ Manage; 2022 Aug; 316():115200. PubMed ID: 35533595 [TBL] [Abstract][Full Text] [Related]
13. Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Abbas A; Azeem M; Naveed M; Latif A; Bashir S; Ali A; Bilal M; Ali L Int J Phytoremediation; 2020; 22(1):52-61. PubMed ID: 31353932 [TBL] [Abstract][Full Text] [Related]
14. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Su H; Fang Z; Tsang PE; Fang J; Zhao D Environ Pollut; 2016 Jul; 214():94-100. PubMed ID: 27064615 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of metal(loid)s in two contaminated agricultural soils: Comparing biochar to its non-pyrolysed source material. Trakal L; Raya-Moreno I; Mitchell K; Beesley L Chemosphere; 2017 Aug; 181():150-159. PubMed ID: 28437740 [TBL] [Abstract][Full Text] [Related]
16. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Choppala G; Bolan N; Kunhikrishnan A; Skinner W; Seshadri B Environ Sci Pollut Res Int; 2015 Jun; 22(12):8969-78. PubMed ID: 23539209 [TBL] [Abstract][Full Text] [Related]
17. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y; Fang Z; Kang Y; Tsang EP J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637 [TBL] [Abstract][Full Text] [Related]
18. Combined apatite, biochar, and organic fertilizer application for heavy metal co-contaminated soil remediation reduces heavy metal transport and alters soil microbial community structure. Hong Y; Li D; Xie C; Zheng X; Yin J; Li Z; Zhang K; Jiao Y; Wang B; Hu Y; Zhu Z Sci Total Environ; 2022 Dec; 851(Pt 1):158033. PubMed ID: 35973531 [TBL] [Abstract][Full Text] [Related]
19. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. Bashir MA; Naveed M; Ahmad Z; Gao B; Mustafa A; Núñez-Delgado A J Environ Manage; 2020 Apr; 259():110051. PubMed ID: 31929031 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of chromium bioavailability through application of organic waste to Indian mustard (Brassica juncea) under chromium-contaminated Indian soils. Dotaniya ML; Rajendiran S; Saurabh K; Saha JK; Dotaniya CK; Patra AK Environ Monit Assess; 2022 Oct; 195(1):31. PubMed ID: 36282356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]