These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 36965655)

  • 1. Current advancements in bio-ink technology for cartilage and bone tissue engineering.
    Badhe RV; Chatterjee A; Bijukumar D; Mathew MT
    Bone; 2023 Jun; 171():116746. PubMed ID: 36965655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research progress of
    Pei Z; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Apr; 36(4):487-494. PubMed ID: 35426290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-decellularized printing of cartilage extracellular matrix: distinction between biomaterial ink and bioink.
    Mokhtarinia K; Masaeli E
    Biomater Sci; 2023 Mar; 11(7):2317-2329. PubMed ID: 36751955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status.
    Das S; Jegadeesan JT; Basu B
    Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of alginate/thymoquinone/halloysite nanotube bio-scaffolds for cartilage repairs: experimental and numerical study.
    Zineh BR; Roshangar L; Meshgi S; Shabgard M
    Med Biol Eng Comput; 2022 Nov; 60(11):3069-3080. PubMed ID: 36066743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering.
    Lin L; Jiang S; Yang J; Qiu J; Jiao X; Yue X; Ke X; Yang G; Zhang L
    Int J Bioprint; 2023; 9(1):637. PubMed ID: 36844245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics.
    Barthold JE; McCreery KP; Martinez J; Bellerjeau C; Ding Y; Bryant SJ; Whiting GL; Neu CP
    Biofabrication; 2022 Mar; 14(2):. PubMed ID: 35203071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in bioprinting technology for tissue regeneration.
    Sabzevari A; Rayat Pisheh H; Ansari M; Salati A
    J Artif Organs; 2023 Dec; 26(4):255-274. PubMed ID: 37119315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications.
    Cui C; Kim DO; Pack MY; Han B; Han L; Sun Y; Han LH
    Biofabrication; 2020 Aug; 12(4):045018. PubMed ID: 32650325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review.
    Feng C; Zhang M; Bhandari B
    Crit Rev Food Sci Nutr; 2019; 59(19):3074-3081. PubMed ID: 29856675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry.
    Yang W; Tu A; Ma Y; Li Z; Xu J; Lin M; Zhang K; Jing L; Fu C; Jiao Y; Huang L
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing.
    Zhao F; Cheng J; Zhang J; Yu H; Dai W; Yan W; Sun M; Ding G; Li Q; Meng Q; Liu Q; Duan X; Hu X; Ao Y
    Acta Biomater; 2021 Sep; 131():262-275. PubMed ID: 34157451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering.
    Wang S; Zhao S; Yu J; Gu Z; Zhang Y
    Small; 2022 Sep; 18(36):e2201869. PubMed ID: 35713246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.