BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36965807)

  • 1. Nucleation of naturally occurring calcic amphibole asbestos.
    Misseri M
    Environ Res; 2023 Aug; 230():114940. PubMed ID: 36965807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments.
    Gamble JF; Gibbs GW
    Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S154-86. PubMed ID: 18396365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminant analysis of amphiboles: Additional considerations.
    Van Orden DR
    Environ Res; 2023 Aug; 230():114579. PubMed ID: 36965796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics.
    Harper M; Lee EG; Doorn SS; Hammond O
    J Occup Environ Hyg; 2008 Dec; 5(12):761-70. PubMed ID: 18828048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asbestiform fibers and cleavage Fragments: Conceptual approaches for differentiation in laboratory practice and data analysis.
    Chatfield EJ
    Environ Res; 2023 Aug; 230():114529. PubMed ID: 36965795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of asbestiform glaucophane-winchite in the Franciscan Complex blueschist, northern Diablo Range, California.
    Erskine BG; Bailey M
    Toxicol Appl Pharmacol; 2018 Dec; 361():3-13. PubMed ID: 30240695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring EMPs in the lung what can be measured in the lung: Asbestiform minerals and cleavage fragments.
    Roggli VL
    Toxicol Appl Pharmacol; 2018 Dec; 361():14-17. PubMed ID: 29959999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inter-laboratory study to determine the effectiveness of procedures for discriminating amphibole asbestos fibers from amphibole cleavage fragments in fiber counting by phase-contrast microscopy.
    Harper M; Lee EG; Slaven JE; Bartley DL
    Ann Occup Hyg; 2012 Jul; 56(6):645-59. PubMed ID: 22456032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():49-73. PubMed ID: 18686078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and identification of elongated mineral particles in road coated aggregates.
    Leocat E; Rielland C; Letessier P
    Toxicol Appl Pharmacol; 2018 Dec; 361():149-154. PubMed ID: 29730310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of scientific literature examining the mining history, geology, mineralogy, and amphibole asbestos health effects of the Rainy Creek igneous complex, Libby, Montana, USA.
    Bandli BR; Gunter ME
    Inhal Toxicol; 2006 Nov; 18(12):949-62. PubMed ID: 16920668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensions of elongate mineral particles and cancer: A review.
    Wylie AG; Korchevskiy AA
    Environ Res; 2023 Aug; 230():114688. PubMed ID: 36965798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling SEM-EDS and confocal Raman-in-SEM imaging: A new method for identification and 3D morphology of asbestos-like fibers in a mineral matrix.
    Wille G; Lahondere D; Schmidt U; Duron J; Bourrat X
    J Hazard Mater; 2019 Jul; 374():447-458. PubMed ID: 31075536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling mesothelioma risk factors from amphibole fiber dimensionality: mineralogical and epidemiological perspective.
    Wylie AG; Korchevskiy A; Segrave AM; Duane A
    J Appl Toxicol; 2020 Apr; 40(4):515-524. PubMed ID: 32040984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative health effects in mice of Libby amphibole asbestos and a fibrous amphibole from Arizona.
    Pfau JC; Buck B; Metcalf RV; Kaupish Z; Stair C; Rodriguez M; Keil DE
    Toxicol Appl Pharmacol; 2017 Nov; 334():24-34. PubMed ID: 28870655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-of-the-science assessment of non-asbestos amphibole exposure: is there a cancer risk?
    Williams C; Dell L; Adams R; Rose T; Van Orden D
    Environ Geochem Health; 2013 Jun; 35(3):357-77. PubMed ID: 23232815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodologies for determining the sources, characteristics, distribution, and abundance of asbestiform and nonasbestiform amphibole and serpentine in ambient air and water.
    Wylie AG; Candela PA
    J Toxicol Environ Health B Crit Rev; 2015; 18(1):1-42. PubMed ID: 25825806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes.
    Choi JK; Vigliaturo R; Gieré R; Pérez-Rodríguez I
    Appl Environ Microbiol; 2023 Jun; 89(6):e0204822. PubMed ID: 37184266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of elongate mineral particles including talc, amphiboles, and biopyriboles observed in mineral derived powders: Comparisons of analysis of the same talcum powder samples by two laboratories.
    Sanchez MS; McGrath-Koerner M; McNamee BD
    Environ Res; 2023 Aug; 230():114791. PubMed ID: 36965804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the presence of asbestos in cosmetic talcum products.
    Pierce JS; Riordan AS; Miller EW; Gaffney SH; Hollins DM
    Inhal Toxicol; 2017 Aug; 29(10):443-456. PubMed ID: 29124998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.