These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 36966434)
1. Annotated genome sequence of a fast-growing diploid clone of red alder (Alnus rubra Bong.). Hixson KK; Fajardo DA; Devitt NP; Sena JA; Costa MA; Meng Q; Boschiero C; Zhao PX; Baack EJ; Paurus VL; Davin LB; Lewis NG; Bell CJ G3 (Bethesda); 2023 Jun; 13(6):. PubMed ID: 36966434 [TBL] [Abstract][Full Text] [Related]
2. Tree-ring δ15N as an indicator of nitrogen dynamics in stands with N2-fixing Alnus rubra. Nehring L; Kranabetter JM; Harper GJ; Hawkins BJ Tree Physiol; 2023 Dec; 43(12):2064-2075. PubMed ID: 37672228 [TBL] [Abstract][Full Text] [Related]
3. Factors Affecting Foliar Oregonin and Condensed Tannin in Red Alder (Alnus rubra Bong.): Phytochemicals Implicated In Defense Against Western Tent Caterpillar (Malacosoma californicum Packard). Boateng K; Hawkins BJ; Yanchuk A; Fellenberg C; Constabel CP J Chem Ecol; 2021 Jul; 47(7):680-688. PubMed ID: 34101117 [TBL] [Abstract][Full Text] [Related]
4. Colonization by nitrogen-fixing Frankia bacteria causes short-term increases in herbivore susceptibility in red alder (Alnus rubra) seedlings. Ballhorn DJ; Elias JD; Balkan MA; Fordyce RF; Kennedy PG Oecologia; 2017 Jun; 184(2):497-506. PubMed ID: 28528390 [TBL] [Abstract][Full Text] [Related]
5. Schwob G; Roy M; Pozzi AC; Herrera-Belaroussi A; Fernandez MP Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217853 [TBL] [Abstract][Full Text] [Related]
6. Host plant frequency and secondary metabolites are concurrently associated with insect herbivory in a dominant riparian tree. Moreira X; Galmán A; Francisco M; Castagneyrol B; Abdala-Roberts L Biol Lett; 2018 Dec; 14(12):20180281. PubMed ID: 30958244 [TBL] [Abstract][Full Text] [Related]
7. Anti-Herbivore Activity of Oregonin, a Diarylheptanoid Found in Leaves and Bark of Red Alder (Alnus rubra). Lea CS; Bradbury SG; Constabel CP J Chem Ecol; 2021 Feb; 47(2):215-226. PubMed ID: 33475940 [TBL] [Abstract][Full Text] [Related]
8. Draft Genomes of Nitrogen-fixing Normand P; Pujic P; Abrouk D; Vemulapally S; Guerra T; Carlos-Shanley C; Hahn D J Genomics; 2022; 10():49-56. PubMed ID: 35707396 [TBL] [Abstract][Full Text] [Related]
9. First Published Report of Rust on White Alder Caused by Melampsoridium hiratsukanum in the United States. Blomquist CL; Scheck HJ; Haynes J; Woods PW; Bischoff J Plant Dis; 2014 Jan; 98(1):155. PubMed ID: 30708619 [TBL] [Abstract][Full Text] [Related]
10. 3-Pentanol glycosides from root nodules of the actinorhizal plant Alnus cremastogyne. Xu Y; Xu Y; Huang Z; Luo Y; Gao R; Xue J; Lin C; Pawlowski K; Zhou Z; Wei X Phytochemistry; 2023 Mar; 207():113582. PubMed ID: 36596436 [TBL] [Abstract][Full Text] [Related]
11. Cyclic diarylheptanoids as potential signal compounds during actinorhizal symbiosis between Alnus sieboldiana and Frankia. Tsurugi-Sakurada A; Kaneko T; Takemoto K; Yoneda Y; Yamanaka T; Kawai S Fitoterapia; 2022 Oct; 162():105284. PubMed ID: 36007806 [TBL] [Abstract][Full Text] [Related]
12. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees. Samant S; Huo T; Dawson JO; Hahn D Microb Ecol; 2016 Feb; 71(2):473-81. PubMed ID: 26143359 [TBL] [Abstract][Full Text] [Related]
13. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129 [TBL] [Abstract][Full Text] [Related]
14. Effect of different Alnus taxa on abundance and diversity of introduced and indigenous Frankia in soils and root nodules. Vemulapally S; Guerra T; Hahn D FEMS Microbiol Ecol; 2022 Mar; 98(3):. PubMed ID: 35170731 [TBL] [Abstract][Full Text] [Related]
15. Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen. Kennedy PG; Schouboe JL; Rogers RH; Weber MG; Nadkarni NM Microb Ecol; 2010 Feb; 59(2):214-20. PubMed ID: 19787390 [TBL] [Abstract][Full Text] [Related]
16. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA. Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653 [TBL] [Abstract][Full Text] [Related]
17. Draft Genomes of Symbiotic Normand P; Pujic P; Abrouk D; Vemulapally S; Guerra T; Carlos-Shanley C; Hahn D J Genomics; 2022; 10():61-68. PubMed ID: 35979511 [TBL] [Abstract][Full Text] [Related]
18. Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant families. Pawlowski K; Swensen S; Guan C; Hadri AE; Berry AM; Bisseling T Mol Plant Microbe Interact; 2003 Sep; 16(9):796-807. PubMed ID: 12971603 [TBL] [Abstract][Full Text] [Related]
19. A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide. Sasakura F; Uchiumi T; Shimoda Y; Suzuki A; Takenouchi K; Higashi S; Abe M Mol Plant Microbe Interact; 2006 Apr; 19(4):441-50. PubMed ID: 16610747 [TBL] [Abstract][Full Text] [Related]
20. Geobotanical characteristics of plant communities with participation of rare species Alnus glutinosa (L.) Gaertn. Bazargaliyeva A; Kurmanbayeva M; Admanova G; Sarzhigitova A; Koblanova S; Utaubayeva A; Gataulina G; Kaisagaliyeva G; Bissenov U; Alzhanova B Braz J Biol; 2024; 84():e281672. PubMed ID: 39109720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]