These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36966856)
1. Highly compressible and macro-porous hydrogels via the synergy of cryogelation and double-network for efficient removal of Cr(VI). Li C; Shen J; Wang J; Bao C; Li B; Liu L; Wang H; Zhang X Int J Biol Macromol; 2023 May; 238():124160. PubMed ID: 36966856 [TBL] [Abstract][Full Text] [Related]
2. Novel efficient capture of hexavalent chromium by polyethyleneimine/amyloid fibrils/polyvinyl alcohol aerogel beads: Functional design, applicability, and mechanisms. Zhang Y; Wen J; Zhou Y; Wang J; Cheng W J Hazard Mater; 2023 Sep; 458():132017. PubMed ID: 37429193 [TBL] [Abstract][Full Text] [Related]
3. Graphene oxide chemically reduced and functionalized with KOH-PEI for efficient Cr(VI) adsorption and reduction in acidic medium. Tadjenant Y; Dokhan N; Barras A; Addad A; Jijie R; Szunerits S; Boukherroub R Chemosphere; 2020 Nov; 258():127316. PubMed ID: 32559494 [TBL] [Abstract][Full Text] [Related]
4. Porous sodium alginate/cellulose nanofiber composite hydrogel microspheres for heavy metal removal in wastewater. Chen Y; Liu X; Zhou R; Qiao J; Liu J; Cai R; Liu J; Rong J; Chen Y Int J Biol Macromol; 2024 Oct; 278(Pt 3):135000. PubMed ID: 39181348 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of cationic biomass lignosulfonate hydrogel for the efficient adsorption of Cr(VI) in wastewater with low pH. Wei S; Chen W; Li Z; Liu Z; Xu A Environ Technol; 2023 Jun; 44(14):2134-2147. PubMed ID: 34962213 [TBL] [Abstract][Full Text] [Related]
6. Facile synthesis of sodium lignosulfonate/polyethyleneimine/sodium alginate beads with ultra-high adsorption capacity for Cr(VI) removal from water. Huang Y; Wang B; Lv J; He Y; Zhang H; Li W; Li Y; Wågberg T; Hu G J Hazard Mater; 2022 Aug; 436():129270. PubMed ID: 35739785 [TBL] [Abstract][Full Text] [Related]
7. Removal of Cd(II), Co(II), Cr(III), Ni(II), Pb(II) and Zn(II) ions from wastewater using polyethyleneimine (PEI) cryogels. Bagdat S; Tokay F; Demirci S; Yilmaz S; Sahiner N J Environ Manage; 2023 Mar; 329():117002. PubMed ID: 36527951 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of 1,8-naphthalimide modified cellulose derivative composite fluorescent hydrogel probes and their application in the detection of Cr(VI). Zuo J; Lv S; Liang S; Zhang S; Wang J; Wei D; Liu L Int J Biol Macromol; 2023 Dec; 253(Pt 4):127082. PubMed ID: 37769762 [TBL] [Abstract][Full Text] [Related]
9. Novel and wet-resilient cellulose nanofiber cryogels with tunable porosity and improved mechanical strength for methyl orange dyes removal. Zhang J; Zhang X; Tian Y; Zhong T; Liu F J Hazard Mater; 2021 Aug; 416():125897. PubMed ID: 34492835 [TBL] [Abstract][Full Text] [Related]
10. Hydroxypropyl chitosan-based dual self-healing hydrogel for adsorption of chromium ions. Cao J; He G; Ning X; Wang C; Fan L; Yin Y; Cai W Int J Biol Macromol; 2021 Mar; 174():89-100. PubMed ID: 33476625 [TBL] [Abstract][Full Text] [Related]
11. Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample. Akar S; Lorestani B; Sobhanardakani S; Cheraghi M; Moradi O Environ Monit Assess; 2019 May; 191(6):373. PubMed ID: 31102030 [TBL] [Abstract][Full Text] [Related]
12. Enhanced synergistic removal of Cu(II) and Cr(VI) with multifunctional biomass hydrogel from strong-acid media. Wang L; Jiang Y; Lu L; Zhang W; Li T; Liu Z; Liu F; Li A Chemosphere; 2023 Dec; 345():140490. PubMed ID: 37879371 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. Ren L; Xu J; Zhang Y; Zhou J; Chen D; Chang Z Int J Biol Macromol; 2019 Aug; 135():898-906. PubMed ID: 31170495 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient adsorption of chromium on N, S-codoped porous carbon materials derived from paper sludge. Zhu Q; Gao H; Sun Y; Xiang Y; Liang X; Ivanets A; Li X; Su X; Lin Z Sci Total Environ; 2022 Aug; 834():155312. PubMed ID: 35439513 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater. Ren T; He P; Niu W; Wu Y; Ai L; Gou X Environ Sci Pollut Res Int; 2013 Jan; 20(1):155-62. PubMed ID: 22392693 [TBL] [Abstract][Full Text] [Related]
16. Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr(VI) and Pb(II) ions removal. Mahmoud ME; Mohamed AK Int J Biol Macromol; 2020 Dec; 164():920-931. PubMed ID: 32673717 [TBL] [Abstract][Full Text] [Related]
17. Surface-modified spherical lignin particles with superior Cr(VI) removal efficiency. Kwak HW; Lee H; Lee KH Chemosphere; 2020 Jan; 239():124733. PubMed ID: 31526991 [TBL] [Abstract][Full Text] [Related]
18. Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. Godiya CB; Xiao Y; Lu X Int J Biol Macromol; 2020 Feb; 144():671-681. PubMed ID: 31862364 [TBL] [Abstract][Full Text] [Related]
19. Biomaterials cross-linked graphene oxide composite aerogel with a macro-nanoporous network structure for efficient Cr (VI) removal. Li L; Wei Z; Liu X; Yang Y; Deng C; Yu Z; Guo Z; Shi J; Zhu C; Guo W; Sun Z Int J Biol Macromol; 2020 Aug; 156():1337-1346. PubMed ID: 31760030 [TBL] [Abstract][Full Text] [Related]
20. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Zhou G; Luo J; Liu C; Chu L; Crittenden J Water Res; 2018 Mar; 131():246-254. PubMed ID: 29294433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]