BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36967193)

  • 1. The role of Wnt signaling in the development of the epiblast and axial progenitors.
    Schnirman RE; Kuo SJ; Kelly RC; Yamaguchi TP
    Curr Top Dev Biol; 2023; 153():145-180. PubMed ID: 36967193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromesodermal specification during head-to-tail body axis formation.
    Martins-Costa C; Wilson V; Binagui-Casas A
    Curr Top Dev Biol; 2024; 159():232-271. PubMed ID: 38729677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An epiblast stem cell-derived multipotent progenitor population for axial extension.
    Edri S; Hayward P; Baillie-Johnson P; Steventon BJ; Martinez Arias A
    Development; 2019 May; 146(10):. PubMed ID: 31023877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation.
    Garriock RJ; Chalamalasetty RB; Kennedy MW; Canizales LC; Lewandoski M; Yamaguchi TP
    Development; 2015 May; 142(9):1628-38. PubMed ID: 25922526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo.
    Guillot C; Djeffal Y; Michaut A; Rabe B; Pourquié O
    Elife; 2021 Jul; 10():. PubMed ID: 34227938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signaling gradients during paraxial mesoderm development.
    Aulehla A; Pourquié O
    Cold Spring Harb Perspect Biol; 2010 Feb; 2(2):a000869. PubMed ID: 20182616
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Tahara N; Kawakami H; Chen KQ; Anderson A; Yamashita Peterson M; Gong W; Shah P; Hayashi S; Nishinakamura R; Nakagawa Y; Garry DJ; Kawakami Y
    Development; 2019 Jul; 146(14):. PubMed ID: 31235634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension.
    Cunningham TJ; Kumar S; Yamaguchi TP; Duester G
    Dev Dyn; 2015 Jun; 244(6):797-807. PubMed ID: 25809880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics.
    Attardi A; Fulton T; Florescu M; Shah G; Muresan L; Lenz MO; Lancaster C; Huisken J; van Oudenaarden A; Steventon B
    Development; 2018 Nov; 145(21):. PubMed ID: 30333213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position-dependent plasticity of distinct progenitor types in the primitive streak.
    Wymeersch FJ; Huang Y; Blin G; Cambray N; Wilkie R; Wong FC; Wilson V
    Elife; 2016 Jan; 5():e10042. PubMed ID: 26780186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors.
    Tsakiridis A; Huang Y; Blin G; Skylaki S; Wymeersch F; Osorno R; Economou C; Karagianni E; Zhao S; Lowell S; Wilson V
    Development; 2014 Mar; 141(6):1209-21. PubMed ID: 24595287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoderm induction and patterning: Insights from neuromesodermal progenitors.
    Martin BL
    Semin Cell Dev Biol; 2022 Jul; 127():37-45. PubMed ID: 34840081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding axial progenitor biology
    Wymeersch FJ; Wilson V; Tsakiridis A
    Development; 2021 Feb; 148(4):. PubMed ID: 33593754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity.
    Gouti M; Tsakiridis A; Wymeersch FJ; Huang Y; Kleinjung J; Wilson V; Briscoe J
    PLoS Biol; 2014 Aug; 12(8):e1001937. PubMed ID: 25157815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartment-dependent activities of Wnt3a/β-catenin signaling during vertebrate axial extension.
    Jurberg AD; Aires R; Nóvoa A; Rowland JE; Mallo M
    Dev Biol; 2014 Oct; 394(2):253-63. PubMed ID: 25152336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension.
    Martin BL
    Semin Cell Dev Biol; 2016 Jan; 49():59-67. PubMed ID: 26658097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinoic Acid Activity in Undifferentiated Neural Progenitors Is Sufficient to Fulfill Its Role in Restricting Fgf8 Expression for Somitogenesis.
    Cunningham TJ; Brade T; Sandell LL; Lewandoski M; Trainor PA; Colas A; Mercola M; Duester G
    PLoS One; 2015; 10(9):e0137894. PubMed ID: 26368825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo.
    Boulet AM; Capecchi MR
    Dev Biol; 2012 Nov; 371(2):235-45. PubMed ID: 22954964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo.
    Lawson KA; Meneses JJ; Pedersen RA
    Development; 1991 Nov; 113(3):891-911. PubMed ID: 1821858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anterior-Posterior Patterning of Definitive Endoderm Generated from Human Embryonic Stem Cells Depends on the Differential Signaling of Retinoic Acid, Wnt-, and BMP-Signaling.
    Davenport C; Diekmann U; Budde I; Detering N; Naujok O
    Stem Cells; 2016 Nov; 34(11):2635-2647. PubMed ID: 27299363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.