These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36967526)

  • 41. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca.
    Roth C; Wei R; Oeser T; Then J; Föllner C; Zimmermann W; Sträter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(18):7815-23. PubMed ID: 24728714
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation.
    Moog D; Schmitt J; Senger J; Zarzycki J; Rexer KH; Linne U; Erb T; Maier UG
    Microb Cell Fact; 2019 Oct; 18(1):171. PubMed ID: 31601227
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fusarium solani pisi cutinase.
    Egmond MR; de Vlieg J
    Biochimie; 2000 Nov; 82(11):1015-21. PubMed ID: 11099798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interfacial binding of cutinase rather than its catalytic activity determines the steady state interfacial tension during oil drop lipid hydrolysis.
    Flipsen JA; van Schaick MA; Dijkman R; van der Hijden HT; Verheij HM; Egmond MR
    Chem Phys Lipids; 1999 Feb; 97(2):181-91. PubMed ID: 10192932
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toward rational thermostabilization of Aspergillus oryzae cutinase: Insights into catalytic and structural stability.
    Shirke AN; Basore D; Butterfoss GL; Bonneau R; Bystroff C; Gross RA
    Proteins; 2016 Jan; 84(1):60-72. PubMed ID: 26522152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates.
    Perz V; Bleymaier K; Sinkel C; Kueper U; Bonnekessel M; Ribitsch D; Guebitz GM
    N Biotechnol; 2016 Mar; 33(2):295-304. PubMed ID: 26594021
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application and comparison in biosynthesis and biodegradation by Fusarium solani and Aspergillus fumigatus cutinases.
    Ping LF; Chen XY; Yuan XL; Zhang M; Chai YJ; Shan SD
    Int J Biol Macromol; 2017 Nov; 104(Pt A):1238-1245. PubMed ID: 28673841
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The application of carbohydrate binding module-
    Zhang Y; Liu Z; Li G; Fu X; Zhang Y; Wang Z; Tian Y; Wu J
    Sheng Wu Gong Cheng Xue Bao; 2022 Jan; 38(1):217-225. PubMed ID: 35142132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of the PETase conformational changes induced by poly(ethylene terephthalate) binding.
    da Costa CHS; Dos Santos AM; Alves CN; Martí S; Moliner V; Santana K; Lameira J
    Proteins; 2021 Oct; 89(10):1340-1352. PubMed ID: 34075621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi.
    Purdy RE; Kolattukudy PE
    Biochemistry; 1975 Jul; 14(13):2832-40. PubMed ID: 239740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biocatalytic Degradation of Parabens Mediated by Cell Surface Displayed Cutinase.
    Zhu B; Wei N
    Environ Sci Technol; 2019 Jan; 53(1):354-364. PubMed ID: 30507170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate.
    Palm GJ; Reisky L; Böttcher D; Müller H; Michels EAP; Walczak MC; Berndt L; Weiss MS; Bornscheuer UT; Weber G
    Nat Commun; 2019 Apr; 10(1):1717. PubMed ID: 30979881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Backbone dynamics of Fusarium solani pisi cutinase probed by nuclear magnetic resonance: the lack of interfacial activation revisited.
    Prompers JJ; Groenewegen A; Hilbers CW; Pepermans HA
    Biochemistry; 1999 Apr; 38(17):5315-27. PubMed ID: 10220318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent.
    Martinez C; De Geus P; Lauwereys M; Matthyssens G; Cambillau C
    Nature; 1992 Apr; 356(6370):615-8. PubMed ID: 1560844
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adsorption of enzymes with hydrolytic activity on polyethylene terephthalate.
    Badino SF; Bååth JA; Borch K; Jensen K; Westh P
    Enzyme Microb Technol; 2021 Dec; 152():109937. PubMed ID: 34749019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Secretory production of an engineered cutinase in Bacillus subtilis for efficient biocatalytic depolymerization of polyethylene terephthalate.
    Oh YR; Jang YA; Song JK; Eom GT
    Bioprocess Biosyst Eng; 2022 Apr; 45(4):711-720. PubMed ID: 35039943
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel putative polyethylene terephthalate (PET) plastic degrading enzymes from the environmental metagenome.
    Karunatillaka I; Jaroszewski L; Godzik A
    Proteins; 2022 Feb; 90(2):504-511. PubMed ID: 34553433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification.
    Nimchua T; Eveleigh DE; Sangwatanaroj U; Punnapayak H
    J Ind Microbiol Biotechnol; 2008 Aug; 35(8):843-50. PubMed ID: 18449587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 1H, 13C, and 15N resonance assignments of Fusarium solani pisi cutinase and preliminary features of the structure in solution.
    Prompers JJ; Groenewegen A; Van Schaik RC; Pepermans HA; Hilbers CW
    Protein Sci; 1997 Nov; 6(11):2375-84. PubMed ID: 9385640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic Features and Thermal Adaptation Mechanisms of a Deep Sea Bacterial Cutinase-Type Poly(Ethylene Terephthalate) Hydrolase.
    Liu Y; Liu C; Liu H; Zeng Q; Tian X; Long L; Yang J
    Front Bioeng Biotechnol; 2022; 10():865787. PubMed ID: 35557867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.