These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36967542)

  • 21. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers.
    Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW
    Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding.
    Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L
    Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A skin-inspired biomimetic strategy to fabricate cellulose enhanced antibacterial hydrogels as strain sensors.
    Jian J; Xie Y; Gao S; Sun Y; Lai C; Wang J; Wang C; Chu F; Zhang D
    Carbohydr Polym; 2022 Oct; 294():119760. PubMed ID: 35868784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy.
    Zhang X; Xiao L; Ding Z; Lu Q; Kaplan DL
    ACS Nano; 2022 Jul; 16(7):10209-10218. PubMed ID: 35587205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropic Hydrogels with a Multiscale Hierarchical Structure Exhibiting High Strength and Toughness for Mimicking Tendons.
    Park N; Kim J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4479-4489. PubMed ID: 34969247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors.
    Shu L; Wang Z; Zhang XF; Yao J
    Int J Biol Macromol; 2023 Mar; 230():123425. PubMed ID: 36706872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tough and Resilient Hydrogels Enabled by a Multifunctional Initiating and Cross-Linking Agent.
    Cao Z; Yuan Z; Wu R; Wu H; Jin B; Zheng J; Wu J
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homogeneous and Real Super Tough Multi-Bond Network Hydrogels Created through a Controllable Metal Ion Permeation Strategy.
    Liu XY; Xu H; Zhang LQ; Zhong M; Xie XM
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42856-42864. PubMed ID: 31633324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors.
    Tong R; Chen G; Pan D; Qi H; Li R; Tian J; Lu F; He M
    Biomacromolecules; 2019 May; 20(5):2096-2104. PubMed ID: 30995834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvent-Exchange-Assisted Wet Annealing: A New Strategy for Superstrong, Tough, Stretchable, and Anti-Fatigue Hydrogels.
    Wu Y; Zhang Y; Wu H; Wen J; Zhang S; Xing W; Zhang H; Xue H; Gao J; Mai Y
    Adv Mater; 2023 Apr; 35(15):e2210624. PubMed ID: 36648109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states.
    Chen H; Yang F; Hu R; Zhang M; Ren B; Gong X; Ma J; Jiang B; Chen Q; Zheng J
    J Mater Chem B; 2016 Sep; 4(35):5814-5824. PubMed ID: 32263754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Super Tough and Intelligent Multibond Network Physical Hydrogels Facilitated by Ti
    Li Y; Yan J; Liu Y; Xie XM
    ACS Nano; 2022 Jan; 16(1):1567-1577. PubMed ID: 34958558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-Physical Cross-Linked Tough and Photoluminescent Hydrogels with Good Biocompatibility and Antibacterial Activity.
    Hu C; Wang MX; Sun L; Yang JH; Zrínyi M; Chen YM
    Macromol Rapid Commun; 2017 May; 38(10):. PubMed ID: 28295772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How can multi-bond network hydrogels dissipate energy more effectively: an investigation on the relationship between network structure and properties.
    Xu H; Shi FK; Liu XY; Zhong M; Xie XM
    Soft Matter; 2020 May; 16(18):4407-4413. PubMed ID: 32323693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual Physically Cross-Linked Double Network Hydrogels with High Mechanical Strength, Fatigue Resistance, Notch-Insensitivity, and Self-Healing Properties.
    Yuan N; Xu L; Wang H; Fu Y; Zhang Z; Liu L; Wang C; Zhao J; Rong J
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):34034-34044. PubMed ID: 27960423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrolyzed Hydrogels with Super Stretchability, High Strength, and Fast Self-Recovery for Flexible Sensors.
    Ding H; Liang X; Xu J; Tang Z; Li Z; Liang R; Sun G
    ACS Appl Mater Interfaces; 2021 May; 13(19):22774-22784. PubMed ID: 33944548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior.
    Zhang M; Chen S; Sheng N; Wang B; Wu Z; Liang Q; Wang H
    Nanoscale; 2021 May; 13(17):8126-8136. PubMed ID: 33881113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene.
    Samadi N; Sabzi M; Babaahmadi M
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2291-2297. PubMed ID: 29055701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green Gas-Mediated Cross-Linking Generates Biomolecular Hydrogels with Enhanced Strength and Excellent Hemostasis for Wound Healing.
    Wang Z; Hu W; Du Y; Xiao Y; Wang X; Zhang S; Wang J; Mao C
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13622-13633. PubMed ID: 32163261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.