These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36967550)

  • 21. Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst.
    Gao X; Wei H; Ma W; Wu W; Ji W; Mao J; Yu P; Mao L
    Nat Commun; 2024 Sep; 15(1):7915. PubMed ID: 39256377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light Field-Enhanced Single-Site Cu Electrocatalyst for Nitrogen Fixation.
    Zhao ZQ; Li K; Liu J; Mao JJ; Lin YQ
    Small; 2023 Mar; 19(10):e2206626. PubMed ID: 36642809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-Atom Catalysis toward Efficient CO
    Su X; Yang XF; Huang Y; Liu B; Zhang T
    Acc Chem Res; 2019 Mar; 52(3):656-664. PubMed ID: 30512920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational Design of Cu-Doped Tetrahedron of Spinel Oxide for High-Performance Nitric Oxide Electrochemical Sensor.
    Cao H; Dang Y; Zhang Z; Chen F; Liu J; Sun Q; Xie Y; Xu Z; Zhang W
    ACS Appl Mater Interfaces; 2023 May; 15(19):23489-23500. PubMed ID: 37139799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomimetic Electronic Communication of Iodine Doped Single-Atom Fe Site for Highly Active and Stable Dopamine Oxidation.
    Li X; Jiao L; Li R; Jia X; Chen C; Hu L; Yan D; Zhai Y; Lu X
    Small; 2024 Sep; ():e2405532. PubMed ID: 39225350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of Copper Oxide (CuO) Nanowires and Their Use for the Electrochemical Sensing of Dopamine.
    Sundar S; Venkatachalam G; Kwon SJ
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning the Redox Chemistry of Copper Oxide Nanoarchitectures Integrated with rGOP
    Asif M; Ashraf G; Aziz A; Iftikhar T; Wang Z; Xiao F; Sun Y
    ACS Appl Mater Interfaces; 2022 May; 14(17):19480-19490. PubMed ID: 35446543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. "Butterfly effect" in CuO/graphene composite nanosheets: a small interfacial adjustment triggers big changes in electronic structure and Li-ion storage performance.
    Zhang X; Zhou J; Song H; Chen X; Fedoseeva YV; Okotrub AV; Bulusheva LG
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17236-44. PubMed ID: 25226227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilizing Copper by a Reconstruction-Resistant Atomic Cu-O-Si Interface for Electrochemical CO
    Tan X; Sun K; Zhuang Z; Hu B; Zhang Y; Liu Q; He C; Xu Z; Chen C; Xiao H; Chen C
    J Am Chem Soc; 2023 Apr; ():. PubMed ID: 37029738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-Atom Ruthenium Biomimetic Enzyme for Simultaneous Electrochemical Detection of Dopamine and Uric Acid.
    Xie X; Wang DP; Guo C; Liu Y; Rao Q; Lou F; Li Q; Dong Y; Li Q; Yang HB; Hu FX
    Anal Chem; 2021 Mar; 93(11):4916-4923. PubMed ID: 33719390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-atom nanozymes Co-N-C as an electrochemical sensor for detection of bioactive molecules.
    Liu Y; Zhao P; Liang Y; Chen Y; Pu J; Wu J; Yang Y; Ma Y; Huang Z; Luo H; Huo D; Hou C
    Talanta; 2023 Mar; 254():124171. PubMed ID: 36495773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile Detection of Blood Creatinine Using Binary Copper-Iron Oxide and rGO-Based Nanocomposite on 3D Printed Ag-Electrode under POC Settings.
    Singh P; Mandal S; Roy D; Chanda N
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3446-3458. PubMed ID: 34142794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical sensor based on CuSe for determination of dopamine.
    Umapathi S; Masud J; Coleman H; Nath M
    Mikrochim Acta; 2020 Jul; 187(8):440. PubMed ID: 32653955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe
    Wei X; Song S; Song W; Xu W; Jiao L; Luo X; Wu N; Yan H; Wang X; Gu W; Zheng L; Zhu C
    Anal Chem; 2021 Mar; 93(12):5334-5342. PubMed ID: 33734693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-Atomic Site Catalyst with Heme Enzymes-Like Active Sites for Electrochemical Sensing of Hydrogen Peroxide.
    Ding S; Lyu Z; Fang L; Li T; Zhu W; Li S; Li X; Li JC; Du D; Lin Y
    Small; 2021 Jun; 17(25):e2100664. PubMed ID: 34028983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling Interfacial Dynamics on Single Atom Electrocatalysts: Explicit Solvation and Potential Dependence.
    Zhang Z; Li J; Wang YG
    Acc Chem Res; 2024 Jan; 57(2):198-207. PubMed ID: 38166366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into Interfacial Synergistic Catalysis over Ni@TiO
    Xu M; Yao S; Rao D; Niu Y; Liu N; Peng M; Zhai P; Man Y; Zheng L; Wang B; Zhang B; Ma D; Wei M
    J Am Chem Soc; 2018 Sep; 140(36):11241-11251. PubMed ID: 30016862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic matching catalysis to realize a highly selective and sensitive biomimetic uric acid sensor.
    Shi Z; Li X; Yu L; Wu X; Wu J; Guo C; Li CM
    Biosens Bioelectron; 2019 Sep; 141():111421. PubMed ID: 31207567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of Co-Cu Diatomic Site Catalysts for High-efficiency Synergistic CO
    Yi JD; Gao X; Zhou H; Chen W; Wu Y
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202212329. PubMed ID: 36098059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.