These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36967565)

  • 1. Organic Semiconductor Single Crystal Arrays: Preparation and Applications.
    Zhao X; Zhang H; Zhang J; Liu J; Lei M; Jiang L
    Adv Sci (Weinh); 2023 May; 10(15):e2300483. PubMed ID: 36967565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Positioning of Organic Semiconductor Single Crystals with Two-Component Aligned Structure through 3D Wettability-Induced Sequential Assembly.
    Deng W; Lu B; Mao J; Lu Z; Zhang X; Jie J
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36205-36212. PubMed ID: 31469274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Semiconductor Single Crystals for Electronics and Photonics.
    Zhang X; Dong H; Hu W
    Adv Mater; 2018 Nov; 30(44):e1801048. PubMed ID: 30039629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Direct Writing Approach for Organic Semiconductor Single-Crystal Patterns with Unique Orientation.
    Chen S; Ma X; Cai Z; Long H; Wang X; Li Z; Qu Z; Zhang F; Qiao Y; Song Y
    Adv Mater; 2022 Apr; 34(17):e2200928. PubMed ID: 35315543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise Patterning of Organic Semiconductor Crystals for Integrated Device Applications.
    Zhang X; Deng W; Jia R; Zhang X; Jie J
    Small; 2019 Jul; 15(27):e1900332. PubMed ID: 30990970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Semiconductor Crystal Engineering for High-Resolution Layer-Controlled 2D Crystal Arrays.
    Chen Z; Duan S; Zhang X; Geng B; Xiao Y; Jie J; Dong H; Li L; Hu W
    Adv Mater; 2022 Jun; 34(22):e2104166. PubMed ID: 34416051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Spatial Confinement Recrystallization Method for Rapid Preparation of Thickness-Controllable and Uniform Organic Semiconductor Single Crystals.
    Sun S; Qi J; Wang S; Wang Z; Hu Y; Huang Y; Fu Y; Wang Y; Du H; Hu X; Lei Y; Chen X; Li L; Hu W
    Small; 2023 Sep; 19(38):e2301421. PubMed ID: 37264765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications.
    Liu H; Liu D; Yang J; Gao H; Wu Y
    Small; 2023 Mar; 19(11):e2206938. PubMed ID: 36642796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary-Confinement Crystallization for Monolayer Molecular Crystal Arrays.
    Liu J; Yu Y; Liu J; Li T; Li C; Zhang J; Hu W; Liu Y; Jiang L
    Adv Mater; 2022 Feb; 34(7):e2107574. PubMed ID: 34837661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning organic single-crystal transistor arrays.
    Briseno AL; Mannsfeld SC; Ling MM; Liu S; Tseng RJ; Reese C; Roberts ME; Yang Y; Wudl F; Bao Z
    Nature; 2006 Dec; 444(7121):913-7. PubMed ID: 17167482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry Lithography Patterning of Monolayer Flexible Field Effect Transistors by 2D Mica Stamping.
    Zou D; He Z; Chen M; Yan L; Guo Y; Gao G; Li C; Piao Y; Cheng X; Chan PKL
    Adv Mater; 2023 May; 35(20):e2211600. PubMed ID: 36841244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Band, High-Performance Phototransistors from Hybrid Perovskite and Organic Crystal Array for Secure Communication Applications.
    Xu X; Deng W; Zhang X; Huang L; Wang W; Jia R; Wu D; Zhang X; Jie J; Lee ST
    ACS Nano; 2019 May; 13(5):5910-5919. PubMed ID: 31067403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of high-performance printed organic field-effect transistors and integrated circuits.
    Xu Y; Liu C; Khim D; Noh YY
    Phys Chem Chem Phys; 2015 Oct; 17(40):26553-74. PubMed ID: 25057765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Uniformity of Organic Field-Effect Transistors by a Single-Crystalline Layer-Controlled Active Channel.
    Sheng Q; Peng B; Ji C; Li H
    Adv Mater; 2023 Dec; 35(52):e2304736. PubMed ID: 37494287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas Sensors Based on Nano/Microstructured Organic Field-Effect Transistors.
    Zhang S; Zhao Y; Du X; Chu Y; Zhang S; Huang J
    Small; 2019 Mar; 15(12):e1805196. PubMed ID: 30730106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for Improving the Performance of Sensors Based on Organic Field-Effect Transistors.
    Wu X; Mao S; Chen J; Huang J
    Adv Mater; 2018 Apr; 30(17):e1705642. PubMed ID: 29377431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance flexible organic field effect transistors with print-based nanowires.
    Lu L; Wang D; Pu C; Cao Y; Li Y; Xu P; Chen X; Liu C; Liang S; Suo L; Cui Y; Zhao Z; Guo Y; Liang J; Liu Y
    Microsyst Nanoeng; 2023; 9():80. PubMed ID: 37323543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Writing and Aligning of Small-Molecule Organic Semiconductor Crystals via "Dragging Mode" Electrohydrodynamic Jet Printing for Flexible Organic Field-Effect Transistor Arrays.
    Kim K; Bae J; Noh SH; Jang J; Kim SH; Park CE
    J Phys Chem Lett; 2017 Nov; 8(22):5492-5500. PubMed ID: 29083198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.