These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36967740)
21. Transient Neonatal Zinc Deficiency Caused by a Heterozygous G87R Mutation in the Zinc Transporter ZnT-2 (SLC30A2) Gene in the Mother Highlighting the Importance of Zn (2+) for Normal Growth and Development. Miletta MC; Bieri A; Kernland K; Schöni MH; Petkovic V; Flück CE; Eblé A; Mullis PE Int J Endocrinol; 2013; 2013():259189. PubMed ID: 24194756 [TBL] [Abstract][Full Text] [Related]
22. Milk-derived miRNA profiles elucidate molecular pathways that underlie breast dysfunction in women with common genetic variants in SLC30A2. Kelleher SL; Gagnon A; Rivera OC; Hicks SD; Carney MC; Alam S Sci Rep; 2019 Sep; 9(1):12686. PubMed ID: 31481661 [TBL] [Abstract][Full Text] [Related]
23. STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Guo L; Lichten LA; Ryu MS; Liuzzi JP; Wang F; Cousins RJ Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2818-23. PubMed ID: 20133611 [TBL] [Abstract][Full Text] [Related]
24. Essential Role for Zinc Transporter 2 (ZnT2)-mediated Zinc Transport in Mammary Gland Development and Function during Lactation. Lee S; Hennigar SR; Alam S; Nishida K; Kelleher SL J Biol Chem; 2015 May; 290(21):13064-78. PubMed ID: 25851903 [TBL] [Abstract][Full Text] [Related]
25. Zinc transporter-2 (ZnT2) variants are localized to distinct subcellular compartments and functionally transport zinc. Lopez V; Kelleher SL Biochem J; 2009 Jul; 422(1):43-52. PubMed ID: 19496757 [TBL] [Abstract][Full Text] [Related]
26. Think zinc: Transient nutritional deficiency related to novel maternal Porter E; Molloy O; Murphy M; O'Connor C Clin Case Rep; 2023 Apr; 11(4):e7213. PubMed ID: 37082517 [TBL] [Abstract][Full Text] [Related]
27. Prolonged unconjugated hyperbilirubinemia associated with breast milk and mutations of the bilirubin uridine diphosphate- glucuronosyltransferase gene. Maruo Y; Nishizawa K; Sato H; Sawa H; Shimada M Pediatrics; 2000 Nov; 106(5):E59. PubMed ID: 11061796 [TBL] [Abstract][Full Text] [Related]
28. Symptomatic zinc deficiency in a full-term breast-fed infant. Murthy SC; Udagani MM; Badakali AV; Yelameli BC Dermatol Online J; 2010 Jun; 16(6):3. PubMed ID: 20579458 [TBL] [Abstract][Full Text] [Related]
29. Functional analysis of two single nucleotide polymorphisms in SLC30A2 (ZnT2): implications for mammary gland function and breast disease in women. Seo YA; Kelleher SL Physiol Genomics; 2010 Nov; 42A(4):219-27. PubMed ID: 20858712 [TBL] [Abstract][Full Text] [Related]
30. Maternal zinc status is associated with breast milk zinc concentration and zinc status in breastfed infants aged 4-6 months. Dumrongwongsiri O; Suthutvoravut U; Chatvutinun S; Phoonlabdacha P; Sangcakul A; Siripinyanond A; Thiengmanee U; Chongviriyaphan N Asia Pac J Clin Nutr; 2015; 24(2):273-80. PubMed ID: 26078244 [TBL] [Abstract][Full Text] [Related]
31. Zinc transfer to the breastfed infant. Krebs NF J Mammary Gland Biol Neoplasia; 1999 Jul; 4(3):259-68. PubMed ID: 10527468 [TBL] [Abstract][Full Text] [Related]
32. Erythematous scaly plaques with erosions in a 4-month-old. Wong CY; Haggart AA; Recht B JAAD Case Rep; 2022 Sep; 27():159-161. PubMed ID: 36097440 [No Abstract] [Full Text] [Related]
33. Determining the Actual Zinc and Iron Intakes in Breastfed Infants: Protocol for a Longitudinal Observational Study. Dumrongwongsiri O; Winichagoon P; Chongviriyaphan N; Suthutvoravut U; Grote V; Koletzko B JMIR Res Protoc; 2020 Nov; 9(11):e19119. PubMed ID: 33155573 [TBL] [Abstract][Full Text] [Related]
34. Demonstrating aspects of multiscale modeling by studying the permeation pathway of the human ZnT2 zinc transporter. Golan Y; Alhadeff R; Glaser F; Ganoth A; Warshel A; Assaraf YG PLoS Comput Biol; 2018 Nov; 14(11):e1006503. PubMed ID: 30388104 [TBL] [Abstract][Full Text] [Related]
35. Zinc transporter 2 interacts with vacuolar ATPase and is required for polarization, vesicle acidification, and secretion in mammary epithelial cells. Lee S; Rivera OC; Kelleher SL J Biol Chem; 2017 Dec; 292(52):21598-21613. PubMed ID: 29114036 [TBL] [Abstract][Full Text] [Related]
36. Prolactin (PRL)-stimulated ubiquitination of ZnT2 mediates a transient increase in zinc secretion followed by ZnT2 degradation in mammary epithelial cells. Seo YA; Lee S; Hennigar SR; Kelleher SL J Biol Chem; 2014 Aug; 289(34):23653-61. PubMed ID: 25016022 [TBL] [Abstract][Full Text] [Related]
37. ZnT2-overexpression represses the cytotoxic effects of zinc hyper-accumulation in malignant metallothionein-null T47D breast tumor cells. Lopez V; Foolad F; Kelleher SL Cancer Lett; 2011 May; 304(1):41-51. PubMed ID: 21353385 [TBL] [Abstract][Full Text] [Related]
38. ZnT2 is critical for lysosome acidification and biogenesis during mammary gland involution. Rivera OC; Hennigar SR; Kelleher SL Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R323-R335. PubMed ID: 29718697 [TBL] [Abstract][Full Text] [Related]
39. ZnT2 is an electroneutral proton-coupled vesicular antiporter displaying an apparent stoichiometry of two protons per zinc ion. Golan Y; Alhadeff R; Warshel A; Assaraf YG PLoS Comput Biol; 2019 Mar; 15(3):e1006882. PubMed ID: 30893306 [TBL] [Abstract][Full Text] [Related]
40. Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Falcón-Pérez JM; Dell'Angelica EC Exp Cell Res; 2007 Apr; 313(7):1473-83. PubMed ID: 17349999 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]