These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 36967901)
1. Mathematical modeling of fluid flow and pollutant transport in a homogeneous porous medium in the presence of plate stacks. Mehmood K; Ullah S; Tul Kubra K Heliyon; 2023 Mar; 9(3):e14329. PubMed ID: 36967901 [TBL] [Abstract][Full Text] [Related]
2. An X-FEM technique for numerical simulation of variable-density flow in fractured porous media. Khoei AR; Saeedmonir S; Hosseini N; Mousavi SM MethodsX; 2023; 10():102137. PubMed ID: 37035525 [TBL] [Abstract][Full Text] [Related]
3. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations. Lee J; Rolle M; Kitanidis PK J Contam Hydrol; 2018 May; 212():41-54. PubMed ID: 28943098 [TBL] [Abstract][Full Text] [Related]
4. Flow transiency on analytical modeling of subsurface solute transport. Li X; Wen Z; Zhu Q; Jakada H Environ Sci Pollut Res Int; 2020 Nov; 27(31):38974-38986. PubMed ID: 32632697 [TBL] [Abstract][Full Text] [Related]
5. Unsteady MHD free convection flow of an exothermic fluid in a convectively heated vertical channel filled with porous medium. Hamza MM; Shuaibu A; Kamba AS Sci Rep; 2022 Jul; 12(1):11989. PubMed ID: 35835976 [TBL] [Abstract][Full Text] [Related]
6. Transient electrophoresis of a conducting spherical particle embedded in an electrolyte-saturated Brinkman medium. Sherief HH; Faltas MS; Ragab KE Electrophoresis; 2021 Aug; 42(16):1636-1647. PubMed ID: 34118079 [TBL] [Abstract][Full Text] [Related]
8. Analytical solution to transport in three-dimensional heterogeneous well capture zones. Indelman P; Lessoff SC; Dagan G J Contam Hydrol; 2006 Sep; 87(1-2):1-21. PubMed ID: 16844264 [TBL] [Abstract][Full Text] [Related]
9. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media. Icardi M; Boccardo G; Marchisio DL; Tosco T; Sethi R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013032. PubMed ID: 25122394 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis. Ginzburg I Phys Rev E; 2017 Jan; 95(1-1):013304. PubMed ID: 28208379 [TBL] [Abstract][Full Text] [Related]
11. Dispersion modeling in pore networks: A comparison of common pore-scale models and alternative approaches. Sadeghi MA; Agnaou M; Barralet J; Gostick J J Contam Hydrol; 2020 Jan; 228():103578. PubMed ID: 31767229 [TBL] [Abstract][Full Text] [Related]
12. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme. Ginzburg I Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489 [TBL] [Abstract][Full Text] [Related]
13. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media. Strutz TJ; Hornbruch G; Dahmke A; Köber R J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572 [TBL] [Abstract][Full Text] [Related]
14. Method of model reduction and multifidelity models for solute transport in random layered porous media. Xu Z; Tartakovsky AM Phys Rev E; 2017 Sep; 96(3-1):033314. PubMed ID: 29346901 [TBL] [Abstract][Full Text] [Related]
15. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. Ahfir ND; Hammadi A; Alem A; Wang H; Le Bras G; Ouahbi T J Environ Sci (China); 2017 Mar; 53():161-172. PubMed ID: 28372741 [TBL] [Abstract][Full Text] [Related]
16. Moment analysis for predicting effective transport properties in hierarchical retentive porous media. Venditti C; Huygens B; Desmet G; Adrover A J Chromatogr A; 2023 Aug; 1703():464099. PubMed ID: 37271084 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle dispersion in disordered porous media with and without polymer additives. Babayekhorasani F; Dunstan DE; Krishnamoorti R; Conrad JC Soft Matter; 2016 Jun; 12(26):5676-83. PubMed ID: 27328208 [TBL] [Abstract][Full Text] [Related]
18. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale. Hu Y; Li D; Shu S; Niu X Phys Rev E; 2016 Feb; 93(2):023308. PubMed ID: 26986440 [TBL] [Abstract][Full Text] [Related]
19. One-dimensional simulation of solute transfer in saturated-unsaturated porous media using the discontinuous finite elements method. Diaw EB; Lehmann F; Ackerer P J Contam Hydrol; 2001 Oct; 51(3-4):197-213. PubMed ID: 11588826 [TBL] [Abstract][Full Text] [Related]
20. Contaminant dispersion with axial input sources in soil media under non-linear sorption. Singh RK; Paul T; Mahato NK; Singh MK Environ Technol; 2023 May; 44(13):1903-1915. PubMed ID: 34898384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]