These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36968030)

  • 41. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries.
    Xu ZL; Yoon G; Park KY; Park H; Tamwattana O; Joo Kim S; Seong WM; Kang K
    Nat Commun; 2019 Jun; 10(1):2598. PubMed ID: 31197187
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode.
    Zhang F; Yao Y; Wan J; Henderson D; Zhang X; Hu L
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):391-397. PubMed ID: 28034316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion.
    Ye XJ; Zhu GL; Meng L; Guo YD; Liu CS
    Phys Chem Chem Phys; 2021 Jun; 23(21):12371-12375. PubMed ID: 34027526
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel Approach Through the Harmonized Sulfur in Disordered Carbon Structure for High-Efficiency Sodium-Ion Exchange.
    Kim H; Kim DY; Zen S; Kang J; Takeuchi N
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43750-43760. PubMed ID: 32845607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries.
    Kim S; Kim YJ; Ryu WH
    ACS Appl Mater Interfaces; 2021 May; 13(20):24070-24080. PubMed ID: 33988962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controllable Self-Assembly of Micro-Nanostructured Si-Embedded Graphite/Graphene Composite Anode for High-Performance Li-Ion Batteries.
    Lin N; Xu T; Li T; Han Y; Qian Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39318-39325. PubMed ID: 29058864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solvothermal-Derived S-Doped Graphene as an Anode Material for Sodium-Ion Batteries.
    Quan B; Jin A; Yu SH; Kang SM; Jeong J; Abruña HD; Jin L; Piao Y; Sung YE
    Adv Sci (Weinh); 2018 May; 5(5):1700880. PubMed ID: 29876213
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
    Wang HG; Wu Z; Meng FL; Ma DL; Huang XL; Wang LM; Zhang XB
    ChemSusChem; 2013 Jan; 6(1):56-60. PubMed ID: 23225752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Confined WS
    Liu Y; Li J; Liu B; Chen Y; Wu Y; Hu X; Zhong G; Yuan J; Chen J; Zhan H; Wen Z
    ChemSusChem; 2023 Feb; 16(4):e202201200. PubMed ID: 35916231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Key Factor Determining the Cyclic Stability of the Graphite Anode in Potassium-Ion Batteries.
    Yuan F; Hu J; Lei Y; Zhao R; Gao C; Wang H; Li B; Kang F; Zhai D
    ACS Nano; 2022 Aug; 16(8):12511-12519. PubMed ID: 35943345
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphite Anode for a Potassium-Ion Battery with Unprecedented Performance.
    Fan L; Ma R; Zhang Q; Jia X; Lu B
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10500-10505. PubMed ID: 31162778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.
    Smith K; Parrish R; Wei W; Liu Y; Li T; Hu YH; Xiong H
    ChemSusChem; 2016 Jun; 9(12):1397-402. PubMed ID: 27121419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage.
    Zhang J; Li C; Peng Z; Liu Y; Zhang J; Liu Z; Li D
    Sci Rep; 2017 Jul; 7(1):4886. PubMed ID: 28687731
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore.
    Gao X; Zhan C; Yu X; Liang Q; Lv R; Gai G; Shen W; Kang F; Huang ZH
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery.
    Yang Y; Song S; Lei S; Sun W; Hou H; Jiang F; Ji X; Zhao W; Hu Y
    Waste Manag; 2019 Feb; 85():529-537. PubMed ID: 30803608
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte.
    Wu H; Ye Z; Zhu J; Luo S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36300925
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flower-like MoSe
    Li J; Hu H; Qin F; Zhang P; Zou L; Wang H; Zhang K; Lai Y
    Chemistry; 2017 Oct; 23(56):14004-14010. PubMed ID: 28777498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CoS
    Liu J; Wu J; Fan S; Li G
    Chemistry; 2021 Jul; 27(38):9820-9829. PubMed ID: 33886138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correction: Application of soot discharged from the combustion of marine gas oil as an anode material for lithium ion batteries.
    Baek HM; Kim DY; Lee WJ; Kang J
    RSC Adv; 2020 Nov; 10(67):41164. PubMed ID: 35532493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.