These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36968146)
1. Hydroxide Diffusion in Functionalized Cylindrical Nanopores as Idealized Models of Anion Exchange Membrane Environments: An Ab Initio Molecular Dynamics Study. Long Z; Tuckerman ME J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):2792-2804. PubMed ID: 36968146 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic Potential of Functional Cations as a Predictor of Hydroxide Diffusion Pathways in Nanoconfined Environments of Anion Exchange Membranes. Zelovich T; Dekel DR; Tuckerman ME J Phys Chem Lett; 2024 Jan; 15(2):408-415. PubMed ID: 38179916 [TBL] [Abstract][Full Text] [Related]
4. Water Layering Affects Hydroxide Diffusion in Functionalized Nanoconfined Environments. Zelovich T; Tuckerman ME J Phys Chem Lett; 2020 Jul; 11(13):5087-5091. PubMed ID: 32515960 [TBL] [Abstract][Full Text] [Related]
5. Hydroxide Solvation and Transport in Anion Exchange Membranes. Chen C; Tse YL; Lindberg GE; Knight C; Voth GA J Am Chem Soc; 2016 Jan; 138(3):991-1000. PubMed ID: 26716727 [TBL] [Abstract][Full Text] [Related]
6. Computational Approaches to Alkaline Anion-Exchange Membranes for Fuel Cell Applications. Ouma CNM; Obodo KO; Bessarabov D Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363606 [TBL] [Abstract][Full Text] [Related]
7. Theoretical Examination of the Hydroxide Transport in Cobaltocenium-Containing Polyelectrolytes. Wickramasinghe S; Hoehn A; Wetthasinghe ST; Lin H; Wang Q; Jakowski J; Rassolov V; Tang C; Garashchuk S J Phys Chem B; 2023 Nov; 127(47):10129-10141. PubMed ID: 37972315 [TBL] [Abstract][Full Text] [Related]
8. Molecular Engineering of Hydroxide Conducting Polymers for Anion Exchange Membranes in Electrochemical Energy Conversion Technology. Noh S; Jeon JY; Adhikari S; Kim YS; Bae C Acc Chem Res; 2019 Sep; 52(9):2745-2755. PubMed ID: 31454229 [TBL] [Abstract][Full Text] [Related]
9. Rational Understanding Hydroxide Diffusion Mechanism in Anion Exchange Membranes during Electrochemical Processes with RDAnalyzer. Ma L; Wang T Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202403614. PubMed ID: 38865214 [TBL] [Abstract][Full Text] [Related]
10. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores. Bankura A; Chandra A J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519 [TBL] [Abstract][Full Text] [Related]
11. Simulation study of the effects of phase separation on hydroxide solvation and transport in anion exchange membranes. Chen C; Arntsen C; Tse YS J Chem Phys; 2020 Mar; 152(9):094903. PubMed ID: 33480722 [TBL] [Abstract][Full Text] [Related]
12. Molecular Modeling in Anion Exchange Membrane Research: A Brief Review of Recent Applications. Karibayev M; Kalybekkyzy S; Wang Y; Mentbayeva A Molecules; 2022 Jun; 27(11):. PubMed ID: 35684512 [TBL] [Abstract][Full Text] [Related]
13. Challenges and Strategies of Anion Exchange Membranes in Hydrogen-electricity Energy Conversion Devices. Li J; Liu C; Ge J; Xing W; Zhu J Chemistry; 2023 May; 29(26):e202203173. PubMed ID: 36626348 [TBL] [Abstract][Full Text] [Related]
14. Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect. Han J; Song W; Cheng X; Cheng Q; Zhang Y; Liu C; Zhou X; Ren Z; Hu M; Ning T; Xiao L; Zhuang L ChemSusChem; 2021 Nov; 14(22):5021-5031. PubMed ID: 34498428 [TBL] [Abstract][Full Text] [Related]
15. Structural and dynamic properties of solvated hydroxide and hydronium ions in water from ab initio modeling. Liu R; Zhang C; Liang X; Liu J; Wu X; Chen M J Chem Phys; 2022 Jul; 157(2):024503. PubMed ID: 35840383 [TBL] [Abstract][Full Text] [Related]
16. Grotthuss versus Vehicular Transport of Hydroxide in Anion-Exchange Membranes: Insight from Combined Reactive and Nonreactive Molecular Simulations. Dong D; Zhang W; van Duin ACT; Bedrov D J Phys Chem Lett; 2018 Feb; 9(4):825-829. PubMed ID: 29390610 [TBL] [Abstract][Full Text] [Related]
17. Towards high conductivity in anion-exchange membranes for alkaline fuel cells. Li N; Guiver MD; Binder WH ChemSusChem; 2013 Aug; 6(8):1376-83. PubMed ID: 23780832 [TBL] [Abstract][Full Text] [Related]
18. Highly Water Resistant Anion Exchange Membrane for Fuel Cells. Yang Z; Hou J; Wang X; Wu L; Xu T Macromol Rapid Commun; 2015 Jul; 36(14):1362-7. PubMed ID: 25962480 [TBL] [Abstract][Full Text] [Related]
19. Multiscale Modeling of Structure, Transport and Reactivity in Alkaline Fuel Cell Membranes: Combined Coarse-Grained, Atomistic and Reactive Molecular Dynamics Simulations. Dong D; Zhang W; Barnett A; Lu J; Van Duin ACT; Molinero V; Bedrov D Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961214 [TBL] [Abstract][Full Text] [Related]
20. Effect of Different Quaternary Ammonium Groups on the Hydroxide Conductivity and Stability of Anion Exchange Membranes. Khan MI; Li X; Fernandez-Garcia J; Lashari MH; Ur Rehman A; Elboughdiri N; Kolsi L; Ghernaout D ACS Omega; 2021 Mar; 6(12):7994-8001. PubMed ID: 33817458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]